УДК: 538.958, 538.956, 537.311.322, 538.915

Континуальная модель одномерного биполярона Холстейна в ДНК

©2014 Каширина Н.И.^{*1}, Лахно В.Д. ^{**2}

¹Институт физики полупроводников им. В.Е Лашкарева, Национальная академия наук Украины, Киев, 03028, Украина ²Институт математических проблем биологии, Российская академия наук, Пущино, Московская область, 142290, Россия

Аннотация. В работе в континуальном приближении получен функционал 1D-биполярона Холстейна. Изучается влияние электронных корреляций, связанных с прямой зависимостью волновой функции системы от расстояния между электронами, на энергию связи биполярона. Для различных параметров рассматриваемой системы проведены расчёты энергии связи биполярона, получена фазовая диаграмма области устойчивости биполярона.

Ключевые слова: электрон-фононное взаимодействие, полярон Холстейна, биполярон.

введение

Сверхпроводящее состояние в ДНК наблюдалось при низких температурах для хаотических нуклеотидных последовательностей (λ -ДНК) [1]. В связи с возможностью объяснения сверхпроводимости в ДНК на основании биполяронного механизма, значительный интерес представляет исследование различных моделей образования биполяронных состояний. Так как условие Бозе-конденсации биполяронного газа может быть затруднено неоднородностью нуклеотидного состава, в [2] предполагается, что низкая температура сверхпроводящего перехода $T \approx 1 \,\mathrm{K}$, наблюдавшаяся в [1], связана с хаотичным расположением нуклеотидных последовательностей. При переходе к однородным системам возможно наблюдение сверхпроводимости при более высоких температурах. Континуальная модель биполярона (БП) большого радиуса в применении к низкоразмерным системам, в частности к ДНК, интересна также в связи с тем, что в рамках данного рассмотрения эффективная масса БП, как правило, значительно ниже, чем значения, полученные для БП малого радиуса. Это может существенно повысить температуру перехода сверхпроводящее состояние. В связи с тем, что модель полярона Хаббарда-Холстейна допускает рассмотрение как полярона (П) малого радиуса, так и П большого радиуса, можно применить континуальный метод Холстейна, предложенный в [3], для получения функционала БП в континуальном приближении.

ФУНКЦИОНАЛЫ ПОЛЯРОНА И БИПОЛЯРОНА ХОЛСТЕЙНА

В адиабатическом приближении волновые функции (ВФ) полярона $\Phi(x)$ [3] и биполярона $\Psi(x_1, x_2)$ удовлетворяют следующим уравнениям:

^{*}kashirina@mail.ru

^{**}lak@impb.psn.ru

КОНТИНУАЛЬНАЯ МОДЕЛЬ ОДНОМЕРНОГО БИПОЛЯРОНА ХОЛСТЕЙНА В ДНК

$$-J\frac{d^2}{dx^2}\Phi(x) - A \cdot u(x)\Phi(x) = W_p\Phi(x), \qquad (1)$$

$$-J\Delta_{12}\Psi_{12} - A(u_1 + u_2)\Psi_{12} + G\delta_{12}\Psi_{12} = W_B\Psi_{12}, \qquad (2)$$

где $\Psi_{12} = \Psi_{21} \equiv \Psi(x_1, x_2)$,

$$\Delta_{12} = \frac{d^2}{dx_1^2} + \frac{d^2}{dx_2^2} \,,$$

 $u_1 \equiv u(x_1)$, $u_2 \equiv u(x_2)$ – операторы смещения в месте расположения соответственно 1-ой и 2-ой заряженной частицы, слагаемое $G\delta_{12}\Psi_{12}$ соответствует кулоновскому отталкиванию взаимодействующих частиц в 1D системе [4], $\delta_{12} = \delta(x_1 - x_2)$, x_1, x_2 – координаты 1 и 2 заряженной частицы. Величина *J* согласно [3] может быть выражена через эффективную массу заряженной частицы $m^* = \hbar^2/2Ja^2$, где *a* – расстояние между ближайшими соседями в линейной цепочке.

Функционалам П и БП соответствуют следующие выражения:

$$F_{P,B} = W_{P,B} + \frac{k}{2} \int u^2(x) \, dx \,, \tag{3}$$

где $k = M \omega_0^2$, M – масса колеблющихся частиц в цепочке, ω_0 – частота колебаний.

Приравняв нулю функциональную производную (3) по оператору смещения (адиабатическое приближение), выразим оператор смещения П и БП через электронную волновую функцию:

$$u_0(x) = \frac{A}{k} \Phi(x), \qquad (4)$$

$$u_0(x) = \frac{2A}{k} \int |\Psi(x, x')|^2 dx' \,.$$
(5)

Подставляя (4) и (5) соответственно в (1) и (2), получим функционалы П и БП в следующем виде:

$$F_{P} = T_{P} + W_{P(\text{int})} + U_{P(ph)},$$
(6)

$$F_{B} = T_{B} + W_{B(\text{int})} + U_{B(ph)} + V_{C}, \qquad (7)$$

где

$$T_{P} = -J \int \Phi^{*}(r) \Delta \Phi(r) d\mathbf{\tau}, \qquad (8)$$

$$W_{P(\text{int})} = -\frac{A^2}{k} \int |\Phi(x)|^4 dx,$$
 (9)

$$U_{P(ph)} = \frac{k}{2} \int u_0^2(r) d^3 r = \frac{A^2}{2 \cdot k} \int |\Phi(x)|^4 dx, \qquad (10)$$

$$V_{C} = G \iint \Psi_{12}^{*} \delta_{12} \Psi_{12} dx_{1} dx_{2} = G \int |\Psi_{11}|^{2} dx_{1} , \qquad (11)$$

$$T_{B} = -J \int \Psi_{12}^{*} \Delta_{12} \Psi_{12} dx_{1} dx_{2}, \qquad (12)$$

$$W_{B(\text{int})} = -\frac{4A^2}{k} \int |\Psi_{12}|^2 |\Psi_{23}|^2 dx_1 dx_2 dx_3.$$
(13)

Подставляя выражения (8) – (13) в функционалы П (6) и БП (7) получим:

431

КАШИРИНА, ЛАХНО

$$F_{p} = -J \int \Phi_{1}^{*} \Delta_{1} \Phi_{1} dx_{1} - \frac{A^{2}}{2k} \int \left| \Phi_{1} \right|^{4} dx, \qquad (14)$$

$$F_{B} = -J \iint \Psi_{12}^{*} \Delta_{12} \Psi_{12} dx_{1} dx_{2} - \frac{2A^{2}}{k} \iiint |\Psi_{12}^{*}|^{2} |\Psi_{23}^{*}|^{2} dx_{1} dx_{2} dx_{3} + G \int |\Psi_{11}|^{2} d^{3} x_{1} .$$
(15)

С учётом (4) уравнение для П Холстейна (1) в континуальном приближении имеет вид

$$-J\Delta\Phi(x) - \frac{A^2}{k}\Phi^3(x) = W_p\Phi(x).$$
(16)

Обозначив $E_{B(P)} = \min \{F_{B(P)}\}$, получим критерий устойчивости БП $2E_P - E_B = \Delta_B > 0$.

Как известно, уравнение (16) имеет точное аналитическое решение. Волновая функция П большого радиуса и соответствующая энергия основного самосогласованного состояния имеют вид

$$\Phi(x) = \alpha / \sqrt{2} \cosh(\alpha^2 x), \ E_P = -2J - \alpha^4 J / 3, \tag{17}$$

где $\alpha^2 = \kappa/8J$, $\kappa = 2 A^2/k$, $k = M \omega_0^2$, *M* и ω_0 – масса и частота колебаний сайта.

Для расчётов энергии связи БП могут использоваться различные наборы пробных ВФ, апробированных для расчётов энергии в 3D системах, например:

$$\Psi_{12} = N(1 + b(x_1 - x_2)^2) \exp(-ax_1^2 - ax_2^2), \qquad (18a)$$

$$\Psi_{12} = N(x_1 - x_2)^2 \sum_{i} C_i \exp(-a_{i1}x_1^2 - 2a_{2i}x_1x_2 - a_{3i}x_2^2), \qquad (18b)$$

$$\Psi_{12} = N \sum_{i} C_{i} \exp(-a_{1i}x_{1}^{2} - 2a_{2i}x_{1}x_{2} - a_{3i}x_{2}^{2}), \qquad (18c)$$

где N – нормировочный множитель, $a_1, a_2, a_3, a, b, C_i, a_{1i}, a_{2i}, a_{3i}$ – вариационные параметры.

РАЗЛИЧНЫЕ ПРЕДСТАВЛЕНИЯ КУЛОНОВСКОГО ОТТАЛКИВАНИЯ В ОДНОМЕРНЫХ И КВАЗИОДНОМЕРНЫХ СИСТЕМАХ

Энергия связи континуального БП существенно зависит от учёта электронных корреляций. В одномерной системе выбор пробной электронной ВФ в виде $\Psi_{12} = f(x_1 - x_2)\Psi'_{12}$, где $f(x_1 - x_2) - функция координат электронов, выбранная таким образом, что для <math>x_1 = x_2$ $f(x_1 - x_2) = 0$, позволяет полностью исключить кулоновское отталкивание между заряженными частицами и, при удачном выборе пробной функции Ψ'_{12} , может значительно понизить энергию одноцентровой конфигурации 1D-полярона. Тем не менее, из физических соображений данное приближение кажется вполне оправданным для биполярона Холстейна малого радиуса, когда ВФ электронов практически полностью сконцентрирована на одном сайте. В том случае, когда речь идёт о кулоновском взаимодействии частиц большого радиуса, когда ВФ одномерной дырки (электрона) «размазана» по нескольким сайтам, представление кулоновского отталкивания дельта-образным потенциалом не кажется безупречной аппроксимацией. В том случае, когда данное взаимодействие не носит контактный характер (квазиодномерные системы), его фурье-компонента в *x*-направлении может быть представлена в виде [5]:

КОНТИНУАЛЬНАЯ МОДЕЛЬ ОДНОМЕРНОГО БИПОЛЯРОНА ХОЛСТЕЙНА В ДНК

$$V_{C}(q_{x}) = \iint dq_{z} dq_{y} \frac{4\pi e^{2}}{q_{x}^{2} + q_{y}^{2} + q_{z}^{2}} \cdot \left[\int_{0}^{\infty} r dr \left| \chi(r) \right|^{2} J_{0}(q_{x}r) \right]^{2},$$
(19)

где $J_0(z)$ – функция Бесселя нулевого порядка, функция $\chi(r)$ зависит от выбранной аппроксимации кулоновского взаимодействия. Так, например, при выборе

$$\chi(r) = \left[\frac{2}{\pi}\right]^{1/2} \frac{1}{\langle r \rangle} \exp(-r/\langle r \rangle), \qquad (20)$$

величина $V_c(q_x)$ может быть вычислена аналитически, как функция параметра $\langle r \rangle$, представляющего собой величину, которая характеризует распределение электронной плотности в плоскости $\langle y-z \rangle$ вблизи направления оси $\langle x \rangle$. В отличие от двумерных систем, этот параметр не может полагаться равным нулю в связи с тем, что при $\langle r \rangle \rightarrow 0$ $V_c(q_x)$ стремится к бесконечности. Поэтому при такой аппроксимации кулоновского отталкивания параметр $\langle r \rangle$ играет роль дополнительного параметра теории, и вычисления энергии связи БП должны быть проведены для разных отличных от нуля величин параметра $\langle r \rangle$. Приближение, использовавшееся в [5] для 1D систем, близко к рассмотренному в [6] случаю БП в анизотропных кристаллах, когда переход к низкоразмерным 2D и 1D системам может быть получен численно изменением параметров анизотропии кристаллов. При этом кулоновское взаимодействие носит трехмерный характер.

РЕЗУЛЬТАТЫ РАСЧЁТОВ

Рис. 1. Плотность заряда $\rho_1 \equiv \rho_1(x_1) = \int_{-\infty}^{\infty} |\Psi_{12}(x_1, x_2)|^2 dx_2$ для ВФ (18a) $\rho_i \equiv \rho_i(x_i)$.

433

КАШИРИНА, ЛАХНО

На рис. 1 представлены графики плотности заряда как функции координаты электрона для ВФ (18а). По координате второго электрона проведено усреднение. Приведенные на рис. 1. графики хорошо согласуются с аналогичными зависимостями, приведенными в [2] для дискретной модели БП. Для удобства сравнения нами в качества примера построены зависимости $\rho(x)$ для тех же параметров, что и в работе [2], в которой исследовалась дискретная модель биполярона Холстейна-Хаббарда. Обратим внимание на то, что в связи с низкой размерностью исследуемой нами системы, наглядное отличие одноцентровой модели БП и двухцентровой модели, проявляющееся в трехмерном случае, теряется. Если в трехмерном случае одноцентровая модель БП – это сферически симметричное образование, в то время как двухцентровая модель соответствует аксиально-симметричному БП, то в одномерной системе учёт электронных корреляций (в нашем случае это прямая зависимость ВФ электронов от межэлектронного расстояния) также приводит к тому, что с ростом кулоновского отталкивания электронная плотность распределяется по двум областям, разделённым резким минимумом в начале координат. На рис. 1. величина G выражена в эВ, J = 0.084 эВ, и $\kappa = 0.5267$ эВ, расстояние между сайтами принято за единицу.

Таблица 1. Удвоенная энергия основного самосогласованного состояния полярона $2E_p$, энергия биполярона E_b , энергия связи БП Δ в электрон-вольтах. Величины Δ , G и к выражены в электрон-вольтах. Пробная ВФ БП выбрана в виде (18а). Параметры p, a, b – параметры минимизации П и БП функционала соответственно. ВФ полярона: $\Psi(x) = N \exp(-p^2 x^2)$, N – нормировочный множитель.

	U	$-2E_p$	р	$-E_b$	а	b	$\Delta = 2E_p - E_{Bp}$
$\kappa = 0.1$ $J = 0.084$	0.1	0.001184	0.083956	0.001187	0.074043	0.026141	0.000003245
	0.075	0.001184	0.083956	0.001259	0.081677	0.019118	0.000075259
	0.05	0.001184	0.083956	0.001556	0.108316	9.4295E-3	0.000372757
	0.025	0.001184	0.083956	0.002734	0.136669	3.1097E-3	0.001550395
	0	0.001184	0.083956	0.004736	0.167913	0	0.003552566
$\kappa = 0.2$ $J = 0.084$	0.2	0.004736	0.167913	0.004749	0.148087	0.104565	0.00001
	0.175	0.004736	0.167913	0.004861	0.15384	0.09098	0.000124
	0.15	0.004736	0.167913	0.005037	0.163354	0.076472	0.000301
	0.1	0.004736	0.1679135	0.006227	0.216633	0.037718	0.001491
	0	0.004736	0.1679135	0.018947	0.335827	0	0.014210
$\kappa = 0.3$ $J = 0.084$	0.3	0.010657	0.251870	0.010686	0.222131	0.235272	0.000029
	0.275	0.010657	0.251870	0.010842	0.22746	0.215063	0.000185
	0.15	0.010657	0.251870	0.014012	0.324949	0.084865	0.003354
	0.1	0.010657	0.251870	0.020149	0.382178	0.040471	0.00949
	0	0.010657	0.251870	0.042630	0.503741	0	0.031973
$\kappa = 0.4$ $J = 0.084$	0.4	0.018947	0.335827	0.018998	0.296175	0.418262	0.000029
	0.3	0.018947	0.335827	0.020151	0.326709	0.305890	0.000185
	0.2	0.018947	0.335827	0.024911	0.433266	0.150872	0.003354
	0.1	0.018947	0.335827	0.043753	0.546677	0.049756	0.00949
	0	0.018947	0.335827	0.075788	0.671654	0	0.031973
$\kappa = 0.7$ $J = 0.084$	0.7	0.05802	0.587697	0.058184	0.518307	1.280917	0.000159003
	0.6	0.05802	0.587697	0.059796	0.542168	1.090127	0.001771705
	0.4	0.05802	0.587697	0.069058	0.685018	0.618775	0.011033118
	0.2	0.05802	0.587697	0.123031	0.928324	0.179210	0.065006196
	0	0.05802	0.587697	0.232100	1.175394	0	0.174075719
$\kappa = 1$ $J = 0.084$	1	0.118418	0.839567	0.118743	0.740439	2.61413	0.000324495
	0.75	0.118418	0.839567	0.125944	0.816774	1.911829	0.007525872
	0.5	0.118418	0.839567	0.155694	1.083164	0.942954	0.037275732
	0.2	0.118418	0.839567	0.30750	1.425417	0.242007	0.189081373
	0	0.118418	0.839567	0.473675	1.679135	0	0.355256569

В таблице 1 приведены энергии основного состояния полярона и БП Холстейна, а также параметры минимизации для ВФ (18а).

Рис. 2. Плотность заряда как функция координаты электрона для ВФ (18b) при различных параметрах электрон-фононного взаимодействия, определяемых параметром $\kappa = 2 A^2/k$.

На рис. 2 приведены зависимости плотности электронных состояний BΦ биполярона, электронная часть которой выбрана В простейшем виде $\Psi_{12} = (x_1 - x_2)^2 \exp(-ax_1^2 - ax_2^2)$ (частный случай ВФ (18b)). При подобном выборе электронной ВФ, кулоновское взаимодействие, которое носит в рассматриваемой нами модели контактный характер, выпадает из рассмотрения. Тем не менее, ВФ, выбранная в таком виде, не приводит к связанному состоянию БП, несмотря на то, что её трехмерный аналог, рассматривавшийся, например, в работе, посвящённой расчётам энергии трехмерного одноцентрового БП [7], давал одно из наиболее низких связанных состояний континуального БП сильной связи. Более сложные многопараметрические функции (18b) требуют отдельного рассмотрения. Обратим внимание на то, что в общем случае более сложных многопараметрических $B\Phi$ (18b) и (18c) требуются дополнительные процедуры симметризации для синглетных состояний И антисимметризации ВФ для триплетных состояний двухэлектронных систем.

Рис. 3 Фазовая диаграмма области существования биполярона для электронной ВФ (18а)

435

КАШИРИНА, ЛАХНО

На рис. 3. представлена фазовая диаграмма существования континуального биполярона Холстейна, полученная нами для ВФ (18а). Фазовая диаграмма области существования БП – прямая линия. Обратим внимание, что дискретная модель [2], в отличие от наших расчётов, выполненных в рамках континуальной модели БП Холстейна, приводит к немонотонности линии, разграничивающей фазовые состояния.

Исследования теоремы вириала для полярона и для БП Холстейна показали, что никаких особенностей по сравнению с теоремой вириала для полярона и БП Пекара не наблюдается. Для полярона Холстейна выполняется теорема вириала 1:2:3:4 [8], для БП Холстейна, рассмотренного нами, выполняются те же вириальные соотношения, что и для БП сильной связи Пекара [7].

ЗАКЛЮЧЕНИЕ

Применение континуального приближения, как показано в работе Холстейна [3], справедливо в том случае, когда координатная часть ВФ полярона изменяется плавно на расстояниях порядка постоянной решётки. В связи с тем, что функционал БП строился в виде суммы функционалов двух поляронов, в качестве критерия справедливости континуального приближения можно использовать критерий, полученный в [3] для изолированного полярона. В общем случае ВФ биполярона может распространяться на большее число постоянных решётки по сравнению с поляронной ВФ, однако, по порядку величины, критерий Холстейна не изменится. Так, согласно [3], линейный размер L_p полярона Холстейна можно приближённо представить в виде:

$$L_p \approx a \left(\frac{4J}{A^2 / M \omega_0^2} \right), \tag{21}$$

где a – расстояние между ближайшими соседями в линейной цепочке. Очевидно, что критерий существования полярона большого радиуса, когда $L_p \gg a$, выполняется при

$$2J \gg A^2 / 2M\omega_0^2 \,. \tag{22}$$

Другими словами, ширина электронной зоны 2J велика по сравнению с величиной $A^2/2M\omega_0^2$. Обратное неравенство выполняется для полярона малого радиуса. На рис. 1 расстояние между ближайшими соседями в цепочке полагалось равным единице: a = 1. Видно, что в рассмотренном нами случае ВФ БП плавно меняется на расстояниях порядка постоянной решётки, поэтому критерий справедливости континуального приближения выполняется.

В работе [2] рассматривалась дискретная модель БП Холстейна–Хаббарда. По сравнению с континуальной моделью дискретная модель является точной, т.к. содержит в качестве своих предельных случаев и полярон большого радиуса, и полярон малого радиуса. При увеличении константы связи электрона с решёткой критерий выполнения континуального приближения перестаёт выполняться, а полярон переходит от полярона большого радиуса к полярону малого радиуса. Соответственно, при больших константах связи энергия полярона в дискретной цепочке не квадратична по константе связи [2]. В пределе небольших констант электрон-фононной связи, как показали наши расчёты, энергии связи биполярона, полученные в рамках дискретной и континуальной модели, хорошо согласуются между собой. При больших константах связи по сравнению с континуальной модель приводит к большим величинам энергии связи по сравнению с континуальной моделью.

Работа выполнялась при поддержке РФФИ, проект № 13-07-00256.

СПИСОК ЛИТЕРАТУРЫ

- 1. Kasumov A.Y., Kociak M., Gueron S., Reulet B., Volkov V., Klinov D., Bouchiat H. *Science*. 2001. V. 291. P. 280–282.
- 2. Лахно В.Д., Султанов В.Б. Биофизика. 2011. Т. 56. № 2. С. 230–234.
- 3. Holstein T. Ann. Phys. 1959. V. 8. P. 325–342.
- 4. Peeters F.M., Smondyrev M.A. Phys. Rev. B 1990. V. 43. P. 4920–4926.
- 5. Takada Y. Phys. Rev. B. 1982. V. 26. № 3. P. 1223–1232.
- 6. Каширина Н.И., Пашицкий Э.А., Моздор Е.В., Шека В.И. Известия РАН. Сер. физич. 1995. Т. 59. № 8. С. 127–133.
- 7. Пекар С.И. Исследования по электронной теории кристаллов. М.–Л.: Гостехтеоретиздат, 1951. 256 с.
- 8. Каширина Н.И., Лахно В.Д. Математическое моделирование автолокализованных состояний в конденсированных средах. М.: ФИЗМАТЛИТ, 2013. 292 с.

Материал поступил в редакцию 13.11.2014, опубликован 24.11.2014.