=ИНТЕЛЛЕКТУАЛЬНЫЙ АНАЛИЗ ДАННЫХ ===

УДК: 123.4

Сравнительный анализ методов оценки ненаправленной связанности между внутричерепными отведениями ЭЭГ коры головного мозга крыс-моделей абсансной эпилепсии

Грищенко А.А.*¹, ван Рейн К.М.^{†2}, Сысоев И.В.^{‡1,3}

¹Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского, Саратов, Россия

²Университет Радбуд Неймеген, институт Дондерса, Неймеген, Нидерланды ³Саратовский филиал Института радиотехники и электроники имени В.А. Котельникова РАН, Саратов, Россия

Аннотация. Исследование связанности по сигналам электромагнитной активности мозга – один из ключевых подходов к изучению эпилепсии в настоящее время, поскольку традиционно эпилептическая активность считается результатом патологической синхронизации. Часто исследования производят на животных-моделях, так как это позволяет производить внутричерепной съём сигналов, и, таким образом, даёт возможность избавиться от помех, вызванных черепом и получить сигналы глубоких областей мозга таких, как таламус или гиппокамп. В настоящей работе внутричерепные записи из лобной и теменной коры мозга крыс-моделей абсансной эпилепсии исследованы с помощью коэффициента нелинейной корреляции и функции взаимной информации в скользящем временном окне. Полученные оценки мер связанности подвергнуты статистическому анализу на значимость с помощью суррогатных данных. Показано, что динамика связанности между лобною и теменною корой существенно варьирует от приступа к приступу и от животного к животному. Таким образом, известные ранее оценки значимого изменения связанности, сопутствующего инициации абсансного разряда, полученные усреднением по большому числу животных и большому числу приступов для каждого животного, могут быть результатом вклада относительно небольшого числа приступов (менее половины от общего количества), для которых изменения значительны.

Ключевые слова: эпилепсия, электроэнцефалография, нелинейная корреляция, функция взаимной информации, суррогатные данные.

введение

Абсансная эпилепсия представляет собою широко распространённую среди детей и подростков (до 50 % случаев [1]) форму эпилепсии не ясной до конца этиологии, основные проявления которой заключаются в частичной или полной потере сознания на краткое время [2] – продолжительность приступа составляет,

^{*}vili_von@mail.ru

[†]t.vanrijn@donders.ru.nl

[‡]ivssci@gmail.com

ГРИЩЕНКО и др.

как правило, порядка 5–10 с [3, 4]. Проблемы исследования абсансной эпилепсии заключаются в сложности ранней диагностики из-за слабой выраженности симптомов и невозможности получения первичной энцефалографической информации от пациентов из интересующих областей мозга, так как дети не имеют клинических показаний к внутричерепному съёму, а поверхностные электроэнцефалограммы (ЭЭГ) сильно искажены черепом и не несут сведений об активности глубоких структур мозга, в первую очередь, таламуса, ответственных по современным представлениям [5] за генерацию эпилептического разряда. Поэтому основные исследования в настоящее время проводятся на животных-генетических моделях, таких как крысы линии WAG/Rij [6].

Поскольку эпилептиформная активность традиционно считается результатом синхронизации различных областей мозга – в случае абсансной эпилепсии это таламо-кортикальная сеть [7], – анализ связанности между областями мозга является важнейшим средством изучения функциональных механизмов эпилепсии. В настоящее время существует значительное число как линейных, так и нелинейных, направленных и ненаправленных методов для выявления связанности по экспериментальным данным [8], в том числе методов, специально адаптированных к сигналам внутричерепных ЭЭГ [9] и для исследования динамики связанности в скользящем временном окне [10]. Однако значительное число существенных результатов в области исследования абсансной эпилепсии получены с помощью достаточно простых нелинейных мер, в частности, нелинейной корреляции [13] и функции взаимной информации [14]. При этом в работах [5, 13, 14] использовался весьма значительный набор данных: более 10 животных в каждом эксперименте и несколько сотен разрядов с сумме (как правило, не менее 10 разрядов от каждого животного), а итоговые данные, свидетельствующие, в частности, о значимом усилении связанности до начала приступа, являются результатом значительного усреднения. В действительности, остаётся не до конца ясным, присутствуют ли зафиксированные изменения всегда, либо только в ряде приступов, а также, насколько типичны временные характеристики этих изменений.

Данная работа ставит целью исследовать вариабельность изменений связанности, сопутствующих началу разряда, в зависимости от конкретного разряда и определить, насколько полученные ранее результаты являются типичными, или же они обусловлены только некоторым ограниченным подмножеством случаев.

2. МАТЕРИАЛЫ И МЕТОДЫ

1. Данные

Анализировались 130-минутные записи внутричерепных ЭЭГ (сигналы локальных потенциалов) от 11 самцов крыс линии WAG/Rij, по 10 разрядов у каждого животного. Длина выбранных разрядов составляла не менее 6 с. Все разряды были спонтанными. Данные снимались с частотою выборки 512.8 Гц и записывались 16-разрядным АЦП с аппаратною фильтрацией в диапазоне 1–99 Гц и подавлением 50-Гц наводки. Анализировались два канала: лобная (FC) и теменная (PC) области коры больших полушарий. Эти же данные были ранее частично использованы в фармакологическом эксперименте [15] в качестве контроля. Анализ взаимной информации между отведениями в скользящем окне проводился в работе [16], но анализировались только усреднённые по животным кривые.

Все эксперименты были одобрены комитетом по этике Радбоуд университета Неймегена (RUDEC 2006-064). Животные оперировались под изофлурановой анестезией. Электроды устанавливались в соответствии с атласом [17] со следующими координатами: лобная кора [AP +3.5; L3], теменная кора [AP –1.6; L4]. Референтный электрод был помещён в мозжечок. После установки электродов животные помещались в отдельные

318

кюветы, получали достаточно води и пищи и проходили реабилитацию в течении не менее 14 суток до момента съёма данных.

Временные ряды записей внутричерепных ЭЭГ для лобной и теменной коры приведены на рисунке 1.

Рис. 1. Временный ряды внутричерепной записи ЭЭГ из лобной (a) и теменной (b) коры. Красные вертикальные линии обозначают начало и конец разряда, закрашенная красным область показывает длину скользящего временного окна, в котором рассчитывались нелинейный коэффициент корреляции и функция взаимной информации.

2. Методы

Поскольку неоднократно отмечалось [5, 14, 16], что сигналы внутричерепных ЭЭГ во время абсансного приступа являются сильно нелинейными и применение к ним линейных мер может дать ошибочные или неполные результаты [9], в качестве простейшего из возможных подходов был использован нелинейный коэффициент корреляции, предложенный в работе [18].

Вкратце, подход состоит в следующем. Пусть имеются экспериментальные временные реализации $\{x_n\}_{n=1}^N$ от некоторой системы X и $\{y_n\}_{n=1}^N$ – от другой системы Y и требуется узнать, в какой степени связаны эти две системы на интервале времени, соответствующем наблюдаемым временным рядам. Связь между этими системами можно предположить в виде:

$$x_n = f(y_{n-\tau}),\tag{1}$$

где f есть некоторая неизвестная функция, а τ – запаздывания, соответствующее времени распространения сигнала (если τ отрицательно, то, значит, имеет место связь в обратном направлении). Тогда, чтобы оценить такую связь, можно построить аппроксимацию функции f по имеющимся данным, например, в виде полинома или кусочно-линейной функции, как предложено в работе [18]. Коэффициенты аппроксимирующей функции

подгоняются обычно методом наименьших квадратов. Такая аппроксимация будет, как правило, неточною по двум причинам:

- 1. системы X и Y в действительности связаны не так жёстко, чтобы существовала однозначная функция f;
- 2. при аппроксимации не удалось точно воспроизвести *f* из-за конечности объёмов данных, разложения по базису и т. п.

Пренебрегая неточностью аппроксимации (вторая причина) при достаточно большом объёме данных, можно ввести следующую меру связанности (коэффициент h^2):

$$h_{XY}^2 = 1 - \frac{D_{X|Y}}{D_X}.$$
 (2)

где D_X есть дисперсия сигнала X, а $D_{X|Y}$ – дисперсия невязок, получившихся при аппроксимации.

Если аппроксимация оказалась бесполезна и сигналы систем X и Y никак не коррелированы, $h_{XY}^2 = 0$, поскольку дисперсия невязок будет равна дисперсии исходного сигнала $\{x_n\}_{n=1}^N$. Если же сигнал $\{x_n\}_{n=1}^N$ однозначно связан с сигналом $\{y_n\}_{n=1}^N$ некоторою гладкою функцией, то при достаточно удачной аппроксимации дисперсия невязок $D_{X|Y}$ будет стремиться к 0. Для линейно коррелированных сигналов величина h_{XY}^2 будет соответствовать модулю классического коэффициента корреляции.

В нашем случае системам X и Y соответствовали теменная (PC) и лобная (FC) кора больших полушарий. Для расчёта коэффициента (2) все пары значений (x_n, y_n) в рассматриваемом временном интервале равномерно распределялись на L бинов, где значение L выбиралось как целая часть от \sqrt{N} . Далее в каждом бине методом наименьших квадратов проводилась линейная аппроксимация зависимости y(x) и дисперсия остатков $D_{X|Y}$ рассчитывалась по формуле:

$$D_{X|Y} = \frac{1}{N} \sum_{n=1}^{N} (y_n - \hat{y}_n)^2, \qquad (3)$$

где $\hat{y}_n = f(x_n)$ – аппроксимированное значение.

Функция взаимной информации I_{XY} представляет ещё одну достаточно простую нелинейную меру ненаправленной связанности между сигналами систем X и Y (в нашем случае – теменной (PC) и лобной (FC) коры больших полушарий), часто используемую для анализа ЭЭГ во время сна [19] и эпилепсии [14, 16]. Существуют несколько подходов к расчёту функции взаимной информации. Мы использовали современный подход [20], основанный на учёте ближайших соседей и предъявляющий наименьшие требования к объёму данных, что важно при исследовании нестационарных по природе физиологических сигналов. Поскольку метод имеет значительную вычислительную сложность, был использован сортировочный алгоритм, описанный в [21].

Для получения информации об изменениях связанности во времени обе характеристики связанности: нелинейный коэффициент корреляции $h_{PC,FC}^2$ и функция взаимной информации $I_{PC,FC}$ рассчитывались в скользящем временном окне длиною 1 с, как это делалось ранее в работе [16]. Использованию более короткого временного окна (например, 0.5 с, как в [13, 9, 14]) препятствовала недостаточно высокая частота оцифровки. Исследовались по десять интервалов не короче 5 секунд для каждого животного.

Далее для тестирования результатов на значимость строились суррогатные временные ряды для каждого животного отдельно путём перестановки реализаций [22] – всего 90

пар. При изучении переходных процессов (в нашем случае – от нормальной динамики к эпилептиформной) такой подход имеет существенно лучшую специфичность, чем часто используемый метод случайного задания фаз гармоник Фурье-образа, как показано в [23].

Рис. 2. Типичные зависимости коэффициента нелинейной корреляции для отдельного разряда. Чёрная линия соответствует началу разряда, верхняя и нижняя красные кривые соответствуют 1.1 % доверительному интервалу, построенному по суррогатам.

Таким образом, поточечная (для одного конкретного момента времени) доверительная вероятность составляла 98.9 %, уровень значимости – 1.1 %. Поскольку имело место множественное тестирование, часть результатов (порядка 1.1 % значений) могли оказаться значимыми случайно. Для каждого разряда было рассчитано число значимых (выше уровня значимости) выводов о связанности на каждом из четырёх интервалов:

- 1. [-5; -3] с до начала разряда (фоновая активность);
- 2. [-2;0] с преиктальная активность, во время которой, как правило, уже обнаруживаются изменения в связанности, приводящие к инициации разряда;
- 3. [0; 2] с начало разряда, соответствует в основном интервалу потери связанности, обнаруженному в [16];
- 4. [2;4] с поддержание разряда.

Наборы этих значений, соответствующие разным разрядам одной и той же крысы, объединялись и тестировались с помощью *t*-теста Стьюдента на значимое отличие от случайного достижимого уровня.

3. РЕЗУЛЬТАТЫ

На рисунке 2 показаны примеры достаточно типичных графиков зависимости мер значимости $h_{PC,FC}^2$ и $I_{PC,FC}$ от времени, посчитанных в скользящем временном

ГРИЩЕНКО и др.

окне, а также верхняя и нижняя границы доверительного интервала, посчитанные с использованием суррогатных рядов. Видно, что кривые $h_{PC,FC}^2(t)$ на рисунках 2,а и 2,b лежат существенно и значимо выше верхнего суррогатного уровня в значительном временной промежутке. Для различных животных есть некоторые разряды, для которых обнаруживается значимая связанность на длинных промежутках как в фоне, в преиктальной фазе, в начале приступа и в фазе поддержания разряда. При этом каждый разряд сильно индивидуален: для одних разрядов есть значимое повышение связанности на одном временном промежутке времени, а для других – на другом. В то же время есть значительное число разрядов, для которых значимое повышение связанности вообще отсутствует (см. рис. 2,с).

Рис. 3. Типичные зависимости функции взаимной информации для отдельного разряда. Чёрная линия соответствует началу разряда, верхняя и нижняя красные кривые соответствуют 1.1 % доверительному интервалу, построенному по суррогатам.

Обобщая полученные результаты, мы перешли к результату t-теста, показывающему, насколько вероятно получить соответствующее каждой конкретной кривой число значимых выводов случайно. В таблице 1 приведены результаты для всех рассмотренных животных, знаками отмечены: «+» число выводов значимо выше случайно возможного, «-» число выводов значимо ниже случайно возможного, «0» число выводов значимо не отличается от случайно возможного (все выводы на уровне значимости 5 %).

На рисунках 3,а-с показаны зависимости $I_{PC,FC}(t)$, где можно видеть значительное число значимых выводов о наличии связанности на разных промежутках времени. При этом значимое возрастание достигается на разных стадиях. У животного № 28 (рис. 3,а) связанность значимо выявляется практически на всех 10 разрядах во всех промежутках: в фоне, в преиктальный период, в период падения связанности в начале разряда, выявленный в работах [14, 16] и при поддержании разряда. У животного № 9 в большинстве разрядов (рис. 3,b) связанность отсутствует в фоне и в первые 2 секунды перед разрядом, но значимо выявляется в преиктальной стадии и стадии поддержания разряда. У животного № 18 в ряде разрядов большинство выводов о значимой связанности

Крыса, №	[-5; -3] фон	[-2; 0] преикт.	[0; 2] потеря	[2; 4] поддержание
2	0	+	+	+
5	0	0	_	0
6	0	0	0	0
7	+	+	0	+
9	0	0	0	0
10	0	0	0	0
14	+	+	0	0
18	0	0	0	0
24	+	0	0	+
25	+	0	0	0
28	+	+	0	0

Таблица 1. Значимые выводы о нелинейной корреляции на основе *t*-теста Стьюдента на различных интервалах

относятся к преиктальной стадии (рис. 3,с), а на других стадиях такие выводы не встречаются, либо их относительно немного.

В целом, для функции взаимной информации число значимых выводов о связанности существенно выше, чем для коэффициента нелинейной когерентности, как это можно видеть из рисунка 4, и поэтому выводы о значимой связи могут быть сделаны на более высоком уровне значимости. Были выбраны несколько пороговых уровней значимости: 0.05, 0.01, 0.001, 0.0001. Результаты тестирования по *t*-критерию Стьюдента для каждого животного в каждом интересующем интервале времени приведены в таблице 2.

Таблица 2.	Уровень	значимости,	на	котором	можно	сделать	выводы	0	связанности	ПО
функции вз	аимной ин	формации на	oci	нове t-тес	та Стью	дента на	различн	ых	интервалах	

Крыса, №	[-5; -3] фон	[-2; 0] преикт.	[0; 2] потеря	[2; 4] поддержание
2	0.001	0.01	0.0001	0.0001
5	0.01	0.01	0.05	0.01
6	0.001	0.001	_	0.01
7	0.01	0.001	0.0001	0.0001
9	_	0.05	_	0.05
10	0.01	0.05	0.01	0.05
14	0.01	0.05	0.01	0.001
18	_	0.05	_	_
24	0.001	0.01	0.001	0.001
25	0.0001	0.01	_	_
28	0.0001	0.0001	0.01	0.0001

4. ЗАКЛЮЧЕНИЕ И ОБСУЖДЕНИЕ

Полученные результаты показывают значительную вариабельность эволюции во времени двух активно используемых для изучения абсансной эпилепсии нелинейных мер связанности: нелинейного коэффициента корреляции и функции взаимной информации. Меры существенно варьируют как в зависимости от выбора как испытуемого (животного),

Рис. 4. Отношение среднего по всем 10 рассмотренным разрядам числа значимых выводов о наличии связанности к общему числу выводов в процентах для коэффициента нелинейной корреляции (а) и функции взаимной информации (b) для каждого животного отдельно.

так и от конкретного приступа у одного и того же животного. Это может показывать, что полученные в работах [24, 13] методом нелинейного корреляционного анализа и работах [14, 16] путём расчёта функции взаимной информации результаты являются результатом вклада только части рассмотренных приступов, хотя и значительной, но не превышающей и половины общего числа рассмотренных разрядов. При этом разные приступы дают вклад на разных стадиях.

Функция взаимной информации демонстрирует существенно большую чувствительность: число значимых выводов для неё в несколько раз выше, чем для коэффициента взаимной корреляции. При этом обе меры ведут себя примерно одинаково в зависимости от временного промежутка. Это значит, что на практике использование функции взаимной информации предпочтительнее.

Интересно, что если рассмотреть таблицы 1 и 2, видно, что статистически сложнее всего выявить связанность в промежутке [0; 2] после начала разряда – на отрезке, который в работах [14, 16] был отмечен как интервал потери связанности. Таким образом, наши результаты не противоречат, а скорее подтверждают ранее полученные. В то же время, по графикам на рисунке 4 такой вывод сделать нельзя, что является следствием того факта, что значимое увеличение/уменьшение связанности и увеличение/уменьшение числа значимых выводов о связанности – не одно и то же.

Работа выполнена при поддержке РФФИ, грант № 17-02-00307 и Стипендии Президента РФ для молодых учёных (СП-1510.2015.4).

СПИСОК ЛИТЕРАТУРЫ

1. Megiddo I., Colson A., Chisholm D., Dua T., Nandi A., Laxminarayan R. Health and economic benefits of public financing of epilepsy treatment in India: An agent-based

simulation model. Epilepsia. 2016. V. 57. No. 3. P. 464-474. doi: 10.1111/epi.13294

- 2. Вольнова А.Б., Ленков Д.Н. Абсансная эпилепсия: механизмы гиперсинхронизации нейронных ансамблей. *Медицинский академический журнал*. 2012. Т. 12. № 1. С. 7–19.
- 3. Holmes G.L., McKeever M., Adamson M. Absence seizures in children: Clinical and electroencephalographic features. *Annals of Neurology*. 1987. V. 21. No. 3. P. 268–273.
- Bosnyakova D., Gabova A., Zharikova A., Gnezditski V., Kuznetsova G., van Luijtelaar G. Some peculiarities of time-frequency dynamics of spike-wave discharges in humans and rats. *Clinical Neurophysiology*. 2007. V. 118. No. 8. P. 1736–1743.
- Meeren H., van Luijtelaar G., Lopes da Silva F., Coenen A. Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory. *Arch. Neurol.* 2005. V. 62. No. 3. P. 371–376.
- 6. Coenen A.M.L., van Luijtelaar E.L.J.M. Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. *Behav. Genetics*. 2003. V. 33. P. 635–655.
- 7. Карлов В.А., Гнездицкий В.В. Абсансная эпилепсия у детей и взрослых. М.: Прессервис, 2005.
- Gourévitch B., Le Bouquin-Jeannès R., Faucon G. Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. *Biological Cybernetics*. 2006. V. 95. No. 4. P. 349-–369.
- 9. Sysoeva M.V., Sitnikova E., Sysoev I.V., Bezruchko B.P., van Luijtelaar G. Application of adaptive nonlinear Granger causality: Disclosing network changes before and after absence seizure onset in a genetic rat model. *J. Neurosci Methods*. 2014. V. 226. P. 33–41.
- Hesse W., Möller E., Arnold M., Schack B. The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. *Journal of Neuroscience Methods*. 2003. V. 124. P. 27–44.
- 11. Baccala L.A., Sameshima K., Ballester G., Do Valle A.C., Timo-Iaria C. Studying the Interaction Between Brain Structures via Directed Coherence and Granger Causality. *Applied Signal Processing*. 1998. V. 5. No. 1. P. 40–48.
- Schelter B., Timmer J., Eichler M. Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. *J. Neuroscience Methods*. 2009. V. 179. P. 121–130.
- Lüttjohann A., van Luijtelaar G. The dynamics of cortico-thalamo-cortical interactions at the transition from pre-ictal to ictal LFPs in absence epilepsy. *Neurobiology of Disease*. 2012. V. 47. P.47–60.
- 14. Sysoeva M.V., Lüttjohann A., van Luijtelaar G., Sysoev I.V. Dynamics of directional coupling underlying spike-wave discharges. *Neuroscience*. 2016. V. 314. P. 75--89.
- 15. van Rijn C.M., Gaetani S., Santolini I., Badura A., Gabova A., Fu J., Watanabe M., Cuomo V., van Luijtelaar G., Nicoletti F., Ngomba R.T. WAG/Rij rats show a reduced expression of CB1 receptors in thalamic nuclei and respond to the CB1 receptor agonist, R(+)WIN55,212-2, with a reduced incidence of spike-wave discharges. *Epilepsia*. 2010. V. 51. No. 8. P. 1511–1521.
- Sysoeva M.V., Vinogradova L.V., Kuznetsova G.D., Sysoev I.V., van Rijn C.M. Changes in corticocortical and corticohippocampal network during absence seizures in WAG/Rij rats revealed with time varying Granger causality. *Epilepsy & Behavior*. 2016. V. 64. P. 44--50.
- 17. Paxinos G., Watson C. *The rat brain in stereotaxc coordinates*. San Diego: Academic Press, 2006.
- Pijn J.P.M., Vijn P.C.M., Da Silva F.L., Boas W.V.E., Blanes W. Localization of epileptogenic foci using a new signal analytical approach. *Neurophysiologie Clinique/Clinical Neurophysiology*. 1990. V. 20. No. 1. P. 1–11.
- 19. Rajendra Acharya U., Oliver Faust, Kannathal N., TjiLeng Chua, Swamy Laxminarayan.

Non-linear analysis of EEG signals at various sleep stages. *Computer Methods and Programs in Biomedicine*. 2005. V. 80. No. 1. P. 37–45.

- 20. Kraskov A., Stögbauer H., Grassberger P. Estimating mutual information. *Phys. Rev. E*. 2004. V. 69. P. 066–138.
- 21. Сысоев И.В. Сравнение численных реализаций алгоритма расчёта взаимной информации на основе учёта ближайших соседей. Известия вузов. Прикладная нелинейная динамика. 2016. Т. 24. № 4. С. 86–95.
- 22. Theiler J., Eubank S., Longtin A., Galdrikian B., Farmer J.D. Testing for nonlinearity in time series: the method of surrogate data. *Physica D*. 1992. V. 58. P. 77–94.
- 23. Sysoev I.V., Sysoeva M.V. Detecting changes in coupling with Granger causality method from time series with fast transient processes. *Physica D*. 2015. V. 309. P. 9–19.
- 24. Meeren H.K., Pijn J.P., van Luijtelaar E.L., Coenen A.M., Lopes da Silva F.H. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. *Journal of Neuroscience*. 2002. V. 22. P. 1480–1495.

Рукопись поступила в редакцию 27.06.2017. Переработанный вариант поступил 05.08.2017. Дата опубликования 05.10.2017.