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Abstract. Modeling and simulation of prokaryotes and prokaryotic communities are 

important for the development of modern fundamental, medical and 

biotechnological researches. Previously, we had developed a software package 

“Haploid evolutionary constructor”, which models simultaneously describe several 

layers of biological organization: genetic, metabolic, population, ecological. Here 

we present a new version of the program, which includes the following major 

improvements: graphic user interface, parallel version of the computational core, 

and support of user-defined plugins. Plugins describe either changes of prokaryotic 

population size or cellular metabolism (gene networks). The graphic user interface 

components for the “Haploid evolutionary constructor” provide convenient 

visualization of data, model construction, setting up and control. High-performance 

versions of our software have been implemented using OpenMP and MPI 

technologies, and can be run at both desktops and MPI clusters. The software is 

available at the website http://evol-constructor.bionet.nsc.ru/ along with 

documentation and example models. The “Haploid evolutionary constructor” 

provides researchers the convenient tool for simulation of bacterial communities’ 

evolution. The models of prokaryotic communities constructed with this software 

may be used for studying the fundamental principles of evolution, connecting 

various levels of biological organization, from genetic to ecological ones. It may 

also be used as an educational tool for the illustration of fundamental biological 

laws. 
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INTRODUCTION 

Prokaryotes communities play a significant role in all major biogeochemical cycles. 

Typically, they live and evolve in communities: bacterial mates, biofilms or another complex 

spatially distributed multilayer structures [1, 2]. A number of prokaryotic species are 

uncultivated outside their natural communities. That is why mathematical modeling and 

computer simulations are of great concern in research of prokaryotes living and evolution. 

These theoretical tools are important for the development of modern fundamental, medical 

and biotechnological researches. 

An agent-based modeling is a major approach in simulation software of prokaryotic 

organisms. Under this approach, populations are simulated as systems, which contain agents – 

separate models of individual organisms or groups of organisms possessing certain traits. 

                                                           
*lashin@bionet.nsc.ru 

http://evol-constructor.bionet.nsc.ru/


LASHIN at al. 

586 
Mathematical Biology and Bioinformatics. 2014. V. 9. № 2. URL: http://www.matbio.org/2014/Lashin_9_585.pdf 

Each agent has its own unique history of interactions with environment and other agents. 

Agent-based modeling is widely used in ecological modeling, social dynamics, and simulation 

of evolutionary processes [3–5]. The models may show how behavior of single individuals 

within the bounds of local rules leads to formation of complex patterns including spatially 

distributed, like fish shoals, bird flights, swarms of insects and other biological communities 

[6–8]. 

The advantage of this approach is the fact that it allows to map the variety of features of a 

separate individual in the most flexible way, and, at the same time, it describes clearly the 

interactions between different individuals at micro level. Moreover, while such evolutionarily 

significant events as mutations and recombination are discrete and individual-oriented, they 

are naturally described via agent-based methods. The main disadvantage of these methods of 

simulations is a high computational complexity. However they require quite a lot of 

experimental data to describe a “portrait” model. In this regard, we proposed recently a multi-

layer methodology for simulations of prokaryotic communities, and the software package 

“Haploid Evolutionary Constructor” (HEC) (http://evol-constructor.bionet.nsc.ru/) for the 

purpose of the reduction of computational complexity in simulations of high-diverse 

microbial communities as well as the dependency on amounts of experimental biological data. 

Currently, there are varieties of software that simulate different aspects of prokaryotic 

dynamic life. For example, BacSim [9] intends simulating bacterial biofilms formation as a 

result of cellular processes. I.e., it integrates cellular processes into generalized population 

model. The basic object in BacSim model is a bacterial cell living in a spatially heterogeneous 

environment. While natural bacterial colonies may have a huge size (billions and more cells), 

they may be impossible to be simulated (e.g. in [9] they simulate population of about 4000 

cells). Besides, only one specie cells are considered, that constrains simulation of genetic 

diversity of a community. 

Micro-Gen Bacteria Simulator [10], simulates the lifecycle of cultivated bacteria and their 

interactions with various molecules, primarily consider ecological, population and metabolic 

levels of organization, while the genetic processes and heredity are not described. The 

software may be used at high-performance clusters as the used model is scalable. It provides 

simulations of high-concentrated bacterial communities (> 107 bacteria/ml, which is close to 

natural concentrations). 

In contrast the AEvol and RAEvol programs [11, 12], highlight genome evolution 

processes in bacterial populations, and do not deal with population or ecological processes 

like e.g. substrates exchange. However, one of the major challenges in the modern science is 

the conversion from the reductionism in considering biological objects and processes to their 

system understanding. 

The AgentCell software [13] was developed to simulate stochastic fluctuations at cell-cell 

interactions. Using this software, authors simulated chemotactic response to a linear gradient 

of attractant of individual swimming bacteria in 3D environment. In this model, each bacterial 

cell is an individual object including its own chemotaxis gene network, motor and flagellum. 

While the majority of the programs for simulation of bacterial communities are focused on 

the description of separate levels of biological organization, our software, Haploid 

Evolutionary Constructor (HEC) provides modeling and simulation of communities at the 

following levels: genetic, metabolic and population. The approach underlying the HEC is 

focused on the simulation of population-genetic, metabolic and ecological factors, and 

attempts to substitute the reductionism ideas by synthetic ones, which is the mainstream of the 

systems biology. 

IMPLEMENTATION 

The initial Haploid evolutionary constructor program was published in 2007 [14]. Since 

then we have been adding new functions to the program. In particular, bacteriophages [15] 

and gene networks [16] layers have been added. In version 2.0 we present the following 

http://evol-constructor.bionet.nsc.ru/
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improvements in the HEC: support of high performance computations, graphical user 

interface, and support of the plugin system. The computational core is implemented in the 

C++ programming language with the use of Boost [17] and OpenMP [18] libraries (for the 

high performance version). The GUI is implemented in the Java programming language (Java 

Development Kit 1.6 Standard Edition). Test models are located in the “scripts” directory of 

the distribution. 
 

 
 

Fig. 1. Principal diagram of the HEC model. 

 

The main concept of the HEC model is presented in Fig. 1. The key object of the model is 

a population of prokaryotic cells. Cells belonging to the same population have identical 

metabolic function – all of them consume the same substrates and produce the same products. 

In HEC, the metabolic function of cells in a population is defined by two submodels: the gene 

network of metabolites synthesis (in HEC, it is called synthesis strategy), and the rule of 

population reproduction and alleles’ competition/selection via metabolites utilization (so 

called trophic strategy in HEC). The numerical parameters of those submodels are assumed as 

genes in our methodology. In the case of synthesis strategies, genes determine the rate 

constants for certain processes in a gene network; in trophic strategies genes determine 

utilization rate constants for metabolites and parameters for their influence on population size. 

Hence, the genome of a separate cell (which we may assume to be a generalized genome of 

monomorphic population of cells) is represented uniformly as a set of constants, the first part 

of which concerns to gene network, the second part – to trophic strategy. In addition to the 

monomorphic state (all cells are genetically identical), a population may be in polymorphic 

state. In this case there are several allelic variants for some (or for all) genes. The detail 

description of the modeling of genetic polymorphism via so called genetic spectra arithmetics 

was published in our previous studies [19]. Population-environment interactions are realized 

via metabolites transport in-/outside cells (Fig. 1). 

Working with the HEC includes two actions: the description/setup of a model and the 

simulation runs of a model. 

1. Model setup 

At this stage, a user defines the model structure and sets up parameters. The main objects 

of the HEC model are prokaryotic population and environment. 

Population is characterized by its size, metabolic functionality and genetic diversity. The 

metabolic functionality is determined by sets of substrates utilized and synthesized by a 

population along with the rules of utilization (and cells reproduction) and synthesis. In the 

HEC, these rules are called trophic strategies and synthesis strategies, respectively. The 
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current version of the HEC has six trophic strategies and two synthesis ones. Users may also 

develop their own strategies via plugins and the HEC open API (see the section “Extension 

with user-defined plugins” below). Utilization and synthesis efficiencies are defined as 

numerical parameters, each of which is assumed to be a “gene”. The set of distribution for all 

genes variants (alleles) in a population is called “generalized population genome”. 

Its further evolution is described with the use of so called genetic spectra arithmetics [19]. 

The user can also set up the general metabolism parameters of a population (mean utilization/ 

synthesis rates), death and flow parameters etc. The environment is characterized by its 

volume, concentrations of environmental and inflow substrates (specific and nonspecific), rate 

of flow and presence of populations. The resulted model of prokaryotic community may be 

schematically represented via graph of trophic interactions (section “Graphic user interface”, 

Fig. 3). Default parameter values were estimated on the base of E. coli data [20] and described 

in detail in [16]. The user can edit the additional probability parameters for stochastic 

simulation of evolution (frequencies of mutations, horizontal gene transfers and losses of 

genes). 

2. Simulation process 

The following regular actions are simulated per iteration (Fig. 2): 

⎯ consumption of environmental substrates by populations; 

⎯ substrates utilization and reproduction of populations; 

⎯ substrates synthesis and secretion into environment; 

⎯ environmental flow. 
 

 
 

Fig. 2. Simulation steps per iteration. 

 

After the completion of iteration, the user may simulate additional action (or some actions 

at a time): 

⎯ mutation in a gene in some cell(s) of a population; 

⎯ horizontal transfer of gene(s) from a cell of donor population into a cell of acceptor  

population. It may lead to the origin of a novel population [19]; 

⎯ loss of gene(s) in some cell(s) of a population (also may lead to the origin of a novel 

population); 

⎯ change of substrates inflow concentration and/or change of flow rate. 

There are two modes for model simulations – general and stochastic. In general mode 

changes of model structure (see above) can be only defined by user, in stochastic mode they 

may occur randomly, according to probabilities set up. 

3. Graphical user interface 

There is a graphical user interface (GUI) in the HEC v.2 package. GUI provides 

visualization of all characteristics for every object of the HEC model: population size 

dynamics, environmental concentrations of substrates, trophic interactions in a community, 

and alleles’ distributions for every gene in a population. GUI is distributed as standalone 

application and consists of the following frames/windows (Fig. 3): 

1. frame displaying structure of a prokaryotic community, includes the tabs: 

a) community structure as a graph of substrate-products interactions (Fig. 4,a); 
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b) community structure as a graph of interpopulation trophic interactions (Fig. 4,b). 

2. frame displaying model dynamics and current model state, includes the tabs: 

a) population dynamics (Fig. 5,a); 

b) dynamics of environmental metabolites concentrations (Fig. 5,b); 

c) distributions of alleles for all genes in populations (Fig. 5,c). 

3. frame displaying a model written in special HEC script language (which described in 

detail in [16]), includes the tabs: 

a) script describing only the state of the current model (only declare part); 

b) script describing the whole model from its beginning including all calculation 

commands. 

4. control frame for the simulations, includes buttons performing actions described above 

(section “Simulation process”). 
 

 
 

Fig. 3. Overview of the HEC graphic user interface. 
 

 

Fig. 4. Structure of prokaryotic community displayed as: a) graph of substrate-product interactions; b) 

trophic graph. 

 

a) b)
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Fig. 5. a) Population dynamics of the community; b) substrates dynamics; c) alleles frequencies of the 

Population 1. 

 

The final model and the simulation scenario can be saved in a script-file using the HEC 

script language. 

4. Extension with user-defined plugins 

At present, there are two types of plugins in the HEC: trophic strategy plugins and 

synthesis strategies plugins. Plugins should be built as dynamic libraries (*.dll on Windows, 

*.so on Linux). In order to make personal plugins, one should develop subclasses of the 

abstract classes Increaser (for trophic strategies) and SynthesisStrategy (for 

synthesis strategies). The detail plugin instructions are available at the HEC web-site 

(http://evol-constructor.bionet.nsc.ru) along with necessary include files and *.dll/*.so 

templates. 

4.1. Implementing new trophic strategy 

The Increaser class is located in the “Increaser.h” file: 
 

class Increaser { 

public: 

 virtual double calculate(double curPopSize, 

  int nGNum, 

  int cGNum, 

  int dGNum, 

  const vector<float>& curMonoGenome, 

  const vector<int>& curMonoCodes, 

  const vector<double>& nSubstrates, 

  const vector<double>& sSubstrates, 

  float deathCoef, float flowCoef, 

  double totalPopSize) = 0; 

}; 

 

a) b)

c)

http://evol-constructor.bionet.nsc.ru/
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A subclass of the Increaser class should implement the method calculate 

defining the new size of a monomorphic population. For this purpose, one can operate the 

following parameters: 

⎯ double curPopSize – size of the current monomorphic population, 

⎯ int nGNum – number of utilization efficiency genes for nonspecific substrates, 

⎯ int cGNum – number of utilization efficiency genes for specific substrates, 

⎯ int dGNum – number of synthesis efficiency genes for specific substrates, 

⎯ const vector<float>& curMonoGenome – alleles values (rate constants) 

for utilization and synthesis efficiencies indexed in the following order 

([0,nGNum-1] – nonspecific substrates utilization rates, 

[nGNum,nGNum+cGNum-1] – specific substrates utilization rates, 

[nGNum+cGNum, nGNum+cGNum+dGNum-1] – specific substrates synthesis 

rates, 

⎯ const vector<int>& curMonoCodes – substrates indices in 

correspondence with curMonoGenome (explanation in Fig.6), 

⎯ const vector<double>& nSubstrates – nonspecific substrates amounts 

(molecules) consumed by all cells of a population, 

⎯ const vector<double>& sSubstrates – specific substrates amounts 

(molecules) consumed by all cells of a population, 

⎯ float deathCoef – death coefficient, 

⎯ float flowCoef – flow coefficient, 

⎯ double totalPopSize – size of the whole community. 

 

 

 

Fig. 6. Correspondence between allele values (curMonoGenome) and substrate numbers 

(nSubstrates, sSubstrates) via substrate indices (codes at curMonoCodes). For example, the 

utilization rate for nonspecific substrate N1 (which concentration is n1) is r1, as curMonoGenome 

[curMonoCodes [1]] == r1 and nSubstrates [curMonoCodes [1]] == n1; 

 

The return value of the method is the new population size (double). 
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4.2. Implementing new synthesis strategy 

The SynthesisStrategy class is located in the “SynthesisStrategy.h” file: 

 
class SynthesisStrategy { 

public: 

 virtual void synthesize(_PolymorphPopulation* p) = 0; 

}; 

 

A subclass of this class should implement the method synthesize, defining the new 

values of synthesized specific substrates. The class _PolymorphPopulation (located in 

“_PolymorphPopulation.h” file) provides the functionality for getting necessary population 

data and setting new values of the synthesized substrates: 
class _PolymorphPopulation 

{ 

public: 

 virtual ~_PolymorphPopulation(void){} 

virtual std::vector<GeneticSpectrumVector> 

getProdSpecGenes() const = 0; 

virtual std::vector<double> getSSCaptured() const = 0; 

virtual std::vector<double> getNSCaptured() const = 0; 

virtual double getMeanCellProductivity() const = 0; 

virtual double getPopulationSize() const = 0; 

virtual void setSynthesizedSubstrate 

(int subNum, double value) = 0; 

}; 

The only nontrivial data type here is the class GeneticSpectrumVector (located in 

“GeneticSpectrumVector.h” file), which describes the distribution of alleles in a population. 

Simple synthesis strategy, previously described in our studies [19], is exampled in the file 

“SynthesisStrategySimple.cpp”. 

5. High performance version of the computational core 

Using the profiler Intel Parallel Amplifier [21], we have found the only function to be 

excessively time-consuming in simulations of communities of high genetic diversity (106–108 

unique allelic combinations). This is the function of population size change. The main idea of 

this function is to look over all allelic combinations in a population (stored in genetic spectra) 

to calculate specific growth for each combination.  

At present, there are two high-performance versions of the HEC: first one uses MPI (only 

available for the console version), the second uses OpenMP (available for both console and 

GUI versions). MPI version uses MPI_Bcast and MPI_Reduce functions to share 

computational tasks. All processes have almost equal load (minor variations occur if number 

of possible allelic combinations is aliquant to the number of processes). In OpenMP version, 

the whole populations are distributed in parallel threads, that minimizes number of memory 

reads/writes but additionally requires number of parallel threads to be aliquot to the number of 

populations in a community (otherwise, some threads may stand idle). 

The MPI version may also be used on shared memory systems. On Microsoft Windows, it 

is required to install Microsoft HPC Pack. In order to run this version, one should use the 

command prompt and type mpiexec –n N hec_mpi.exe script.txt command, 

where N is the number of parallel processes; script.txt is the name of model script. 

We measured parallelization efficiency on Novosibirsk cluster supercomputer NCS 30-T 

[22] (6-core processes X5670 2.93 GHz (Westmere)) for the MPI version. OpenMP version 

was measured on laptop (Amd Phenom II x6 1055T). Model scripts used for load testing 

~106–108 allelic combinations in a community are listed in Additional file 1. Results of load 

testing are shown in Table 1 (NCS 30-T) and Table 2 (laptop). 
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Table 1. Measures of parallelization efficiency on Novosibirsk cluster supercomputer NSC 30-

T. Standard deviation was rounded up 

Number of 
processes 

Calculation time (mean), 
hh:mm:ss 

Parallelization efficiency 
(mean) 

Acceleration (mean) Standard 
deviation, sec 

1 8:02:26 1 1 249 

2 4:10:24 0.9633 1,9266 65 

4 2:05:20 0.9623 3,8492 188 

8 1:02:03 0.9718 7,7744 4 

16 0:31:06 0.9695 15,512 3 

24 0:20:48 0.9664 23,1936 3 

36 0:13:46 0.9734 35,0424 1 

64 0:07:52 0.9582 61,3248 2 

96 0:05:13 0.9633 92,4768 1 

144 0:03:32 0.9481 136,5264 1 

264 0:02:03 0.8914 235,3296 2 

 

Table 2. Measures of parallelization efficiency (MPI) on 6-core laptop (Amd Phenom II x6 

1055T) 

Number of 

allelic 

combinations 

Number of 

generations 

Computational time (sec.) – parallelization efficiency 

Number of parallel threads 

1 2 3 4 5 6 

1000 25000 53 sec  45 sec – 58% 44 sec –4 0% 44 sec – 30% 45 sec – 23% 52 sec – 17% 

5000 10000 73 sec 46 sec – 79% 38 sec – 64% 34 sec – 54% 33 sec – 44% 37 sec – 33% 

10000 5000 68 sec 39 sec – 87% 31 sec – 73% 27 sec – 63% 25 sec – 54% 27 sec – 42% 

100000 500 85 sec 48 sec – 89% 35 sec – 81% 28 sec – 76% 24 sec – 71% 23 sec – 62% 

1000000 50 162 sec 88 sec – 92% 61 sec – 89% 48 sec – 84% 40 sec – 81% 37 sec – 73% 

10000000 4 199 sec 101 sec – 99% 69 sec – 96% 55 sec – 90% 46 sec – 87% 44 sec – 75% 

 

For those load tests, we have obtained almost linear acceleration in the MPI console 

version. Using the NCS 30-T cluster, we have reduced the computational time from 8 hours (1 

process) to 2 minutes (264 processes on 22 computational nodes, see Additional file 2). 

In OpenMP version, the acceleration may be observed even for communities of relatively 

low genetic diversity (~100 allelic combinations and more) (Table 3). 
 

Table 3. Measures of parallelization efficiency (OpenMP) on 6-core laptop Amd Phenom II x6 

1055T 

Number of 

allelic 

combinations 

Number of 

generations 

Computational time (sec.) – parallelization efficiency 

Number of parallel threads 

1 2 4 8 

1000 25000 49 sec 39 sec – 63% 37 sec – 33% 35 sec – 18% 

5000 10000 65 sec 41 sec – 80% 29 sec – 56% 28 sec – 29% 

10000 5000 59 sec 35 sec – 84% 23 sec – 64% 21 sec – 35% 

100000 500 75 sec 49 sec – 77% 23 sec – 82% 21 sec – 45% 

1000000 50 147 sec 81 sec – 91% 45 sec – 82% 34 sec – 54% 

10000000 4 186 sec 99 sec – 94% 73 sec – 64% 48 sec – 48% 

 

Increasing genetic diversity of a community, we get more and more efficient 

parallelization tending to linear. It should be noted that actual acceleration on OpenMP may 

exceed number of physical processors. For instance, using 6-core processor laptop, we ran 

OpenMP version with 10 threads and obtained 8-fold acceleration. 

RESULTS AND DISCUSSION 

As demonstration model, we have constructed the “poisoner-prey” model which is the 

variation of the classic predator-prey model [23]. In this model, the community consists of 

two populations P1 and P2, producing substrates S2 and S1, respectively. S1 activates growth 

of P1 while S2 inhibits P2 (Fig. 7). 
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Fig. 7. The structure of trophic relations in the community. See text for details. 
 

Nonspecific substrate N1 is utilized by both populations. Depending on relations between 

utilization efficiency for S1 in cells of P1 and sensitivity to S2 in cells of P2, there may be 

various dynamics of the community: stable/decay oscillations, stationary states and death of 

the whole community. If the populations are genetically polymorphic (gene for S1 utilization 

in P1 cells and/or gene of S2 sensitivity in P2 cells), one may observe directional selection: 

mean utilization efficiency for S1 is being increased in P1 cells, while mean sensitivity for S2 

is being decreased in P2 cells. The creation of the model is described in detail in Additional 

file 3, while the script with the same model – in Additional file 4. 

The models of prokaryotic communities constructed with the HEC may be used for 

studying the fundamental principles of evolution, connecting various levels of biological 

organization, from genetic to ecological ones. The HEC may also be used as an educational 

tool for the illustration of fundamental biological laws. Finally, we hope that in future we 

might use the HEC for the tasks of microbial biotechnology. 

We have performed optimization of computational algorithm of the HEC. The higher 

genetic diversity has a prokaryotic community, the more effective the optimization is (almost 

linear acceleration was obtained). We assume such communities to be most interesting for 

studiers, and hope that the HEC and its high-performance versions presented in this paper will 

allow users to explore more complex and variable models of biological processes in 

prokaryotic communities, and therefore, to get advances in evolutionary biology. One can also 

use the HEC to study competition and evolution in gene networks populations, including 

adaptations of gene networks parameters to particular environmental or cellular conditions. 

Model of a gene network may be described in the HEC in terms of synthesis strategies, while 

criterion of optimality and selection mechanisms – in terms of trophic strategies.  
 

The study was supported by the following grants: Budget Project VI.61.1.2, RFBR 13-04-00620. 

REFERENCES 

1. Webb J.S., Givskov M., Kjelleberg S. Bacterial biofilms: prokaryotic adventures in 

multicellularity. Current opinion in microbiology. 2003. V. 6. № 6. P. 578–585. 



HEC 2.0: IMPROVED SIMULATION OF THE EVOLUTION OF PROKARYOTIC 

595 
Mathematical Biology and Bioinformatics. 2014. V. 9. № 2. URL: http://www.matbio.org/2014/Lashin_9_585.pdf 

2. Stoodley P., Sauer K., Davies D.G., Costerton J.W. Biofilms as complex differentiated 

communities. Annual Reviews in Microbiology. 2002. V. 56 № 1. P. 187–209. 

3. Grimm V., Berger U., Bastiansen F., Eliassen S., Ginot V., Giske J.,Goss-Custard J., 

Grand T., Heinz S., Huse G. et al. A standard protocol for describing individual-based 

and agent-based models. Ecological modelling. 2006. V. 198 № 1. P. 115–126. 

4. Macy M., Willer R. From factors to actors: Computational sociology and agent-based 

modeling. Annual review of sociology. 2002. V. 28. P. 143–166. URL: 

http://www.jstor.org/stable/10.2307/3069238 (accessed 18.11.2014). 

5. DeAngelis D.L., Mooij W.M. Individual-based modeling of ecological and evolutionary 

processes. Annual Review of Ecology, Evolution, and Systematics. 2005. P. 147–168. 

6. Hoare D., Couzin I., Godin J-G., Krause J. Context-dependent group size choice in fish. 

Animal Behaviour. 2004. V. 67. № 1. P. 155–164. 

7. Grimm V., Revilla E., Berger U., Jeltsch F., Mooij W.M., Railsback S.F., Thulke H-H., 

Weiner J., Wiegand T., DeAngelis D.L. Pattern-oriented modeling of agent-based 

complex systems: lessons from ecology. Science. 2005. V. 310. № 5750. P. 987–991. 

8. Olfati-Saber R. Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory. 

Automatic Control, IEEE Transactions on. 2006. V. 51. № 3. P. 401–420. 

9. Kreft J.U., Booth G., Wimpenny J.W.T. BacSim, a simulator for individual-based 

modelling of bacterial colony growth. Microbiology. 1998. V. 144. № 12. P. 3275–

3287. 

10. Murphy J.T., Walshe R. Modelling Antibiotic Resistance in Bacterial Colonies Using 

Agent-Based Approach. In: Understanding the Dynamics of Biological Systems. Eds.: 

Dubitzky W., Southgate J., Fuß H. New York: Springer Science & Business Media, 

2011. P. 131–154. 

11. Knibbe C., Mazet O., Chaudier F., Fayard J-M., Beslon G. Evolutionary coupling 

between the deleteriousness of gene mutations and the amount of non-coding sequences. 

Journal of Theoretical Biology. 2007. V. 244. № 4. P. 621–630. 

12. Beslon G., Parsons D.P., Sanchez-Dehesa Y., Peña J-M., Knibbe C. Scaling laws in 

bacterial genomes: a side-effect of selection of mutational robustness? Biosystems. 

2010. V. 102. № 1. P. 32–40. 

13. Emonet T., Macal C.M., North M.J., Wickersham C.E., Cluzel P. AgentCell: a digital 

single-cell assay for bacterial chemotaxis. Bioinformatics. 2005. V. 21 № 11. P. 2714–

2721. 

14. Lashin S.A., Suslov V.V., Kolchanov N.A., Matushkin Y.G. Simulation of coevolution 

in community by using the "Evolutionary Constructor" program. In Silico Biology. 

2007. V. 7. № 3. P. 261–275. 

15. Lashin S.A., Matushkin Y.G., Suslov V.V., Kolchanov N.A. Evolutionary trends in the 

prokaryotic community and prokaryotic community-phage systems. Russian Journal of 

Genetics. 2011. V. 47. № 12. P. 1487–1495. 

16. Lashin S.A., Matushkin Y.G. Haploid evolutionary constructor: new features and 

further challenges. In Silico Biology. 2012. V. 11. № 3. P. 125–135. 

17. Boost C++ Library. URL: http://www.boost.org/ (accessed 18.11.2014). 

18. The OpenMP® API specification for parallel programming. URL: 

http://openmp.org/wp/ (accessed 18.11.2014). 

19. Lashin S.A., Suslov V.V., Matushkin Y.G. Comparative Modeling of Coevolution in 

Communities of Unicellular Organisms: Adaptability and Biodiversity. Journal of 

Bioinformatics and Computational Biology. 2010. V. 8. № 3. P. 627–643. 

20. Sundararaj S., Guo A., Habibi‐Nazhad B., Rouani M., Stothard P., Ellison M., Wishart 

D.S. The CyberCell Database (CCDB): a comprehensive, self-updating, relational 

database to coordinate and facilitate in silico modeling of Escherichia coli. Nucleic 

acids research. 2004. V. 32. № suppl 1. P. D293–D295. 

http://www.google.ru/search?hl=ru&tbo=p&tbm=bks&q=inauthor:%22Werner+Dubitzky%22
http://www.google.ru/search?hl=ru&tbo=p&tbm=bks&q=inauthor:%22Jennifer+Southgate%22
http://www.google.ru/search?hl=ru&tbo=p&tbm=bks&q=inauthor:%22Hendrik+Fu%C3%9F%22


LASHIN at al. 

596 
Mathematical Biology and Bioinformatics. 2014. V. 9. № 2. URL: http://www.matbio.org/2014/Lashin_9_585.pdf 

21. Intel Parallel Amplifier. URL: http://software.intel.com/intel-parallel-studio-xe 

(accessed 18.11.2014). 

22. Novosibirsk cluster supercomputer NCS 30-T. URL: http://www2.sscc.ru/HKC-

30T/HKC-30T.htm (accessed 18.11.2014). 

23. Lotka A.J. Contribution to the Theory of Periodic Reactions. Journal of Physical 

Chemistry. 1910. V. 14. № 3. P. 271–274. 
 

 
Received December 04, 2014.  

Published December 29, 2014. 


