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Abstract. The extracellular matrix (ECM) is best described as a dynamic

three-dimensional mesh of various macromolecules. These include proteoglycans

(e.g., perlecan andagrin), non-proteoglycan polysaccharides (e.g., hyaluronan), and

fibrous proteins (e.g., collagen, elastin, fibronectin, and laminin). ECM proteins

are involved in various biological functions and their functionality is largely

governed by interaction with other ECM proteins as well as trans-membrane

receptors including integrins, proteoglycans such assyndecan, other glycoproteins,

and members of the immunoglobulin superfamily. In the present work, a

machine learning approach is developed using sequence and evolutionary features

for predicting ECM protein-receptor interactions. Two different feature vector

representations, namely fusion of feature vectors and average of feature vectors

are used within corporation of the best representation employing feature selection.

The current results show that the feature vector representation is an important

aspect of ECM protein interaction prediction, and that the average of feature vectors

performed better than the fusion of feature vectors. The best prediction model with

boosted random forest resulted in 72.6 % overall accuracy, 74.4 % sensitivity and

70.7 % specificity with the 200 best features obtained using the ReliefF feature

selection algorithm. Further, a comparative analysis was performed for negative

sample subset selection using three sampling methods, namely random sampling,

k-Means sampling, and Uniform sampling. k-Means based representative sampling

resulted in enhanced accuracy (75.5 % accuracy with 80.8 % sensitivity, 68.1 %

specificity and 0.801AUC) for the prediction of ECM protein-receptor interactions

in comparison to the other sampling methods. On comparison with other three state

of the art PPI predictors, it is observed that the latter displayed low sensitivity

but higher specificity. The current work presents the first machine learning based

prediction model specifically developed for ECM protein-receptor interactions.

Key words: ECM receptor interaction, Boosting; Boosted Random Forest, ReliefF, Random

Sampling, k-Means, Uniform Sampling.

INTRODUCTION

Extracellular matrix (ECM) proteins play many important roles in cell mechanics,

cytoskeletal organization, cell growth, cell differentiation, cell migration, tissue development,

and other cellular processes [1, 2]. As such, they are directly involved in the transmission of

information from the extracellular environment to the intracellular environment and vice-versa

[3]. The ECM consist of three major classes of molecules: proteoglycans (e.g., perlecans, agrins,

etc.); non-proteoglycan polysaccharides, such as hyaluronic acid; and fibrous proteins such as

elastin, collagens, laminin, and fibronectin, out of which collagen is themost abundant [4]. Some

ECM proteins bind only single specific ECM proteins while others bind several ECM proteins.
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Among the proteins that are part of the ECM and link it to cells are integrins and

syndecans, two families of cell surface transmembrane receptors. Integrins are composed of

two non-covalently associated transmembrane glycoprotein subunits called α and β. 24 types

ofα and 9 types ofβ subunits yield adversity of human integrins further increased via alternative

splicing, governing specificity for different ligands. Integrins specifically interact with proteins

containing the ARG-GLY-ASPmotif [5]. Integrins function as adhesion molecules that connect

ECM proteins such as fibronectin and laminin to the cell’s actin cytoskeleton [6] and are

involved in various biological functions [5]. Integrin-ligand interactions have been found to play

important roles in many signal transduction pathways, in cell proliferation, apoptosis [4, 6], cell

migration, cell adhesion and in diseases such as LAD1 (leukocyte adhesion deficiency) [5]. The

role of integrins in cancer progression has also been reported [3]. Syndecans are proteoglycans

enriched in dibasic sequences and peculiar in that they are using a transmembrane domain instead

of glycosyl-phophatidyl inositol linkage for their attachment to the plasma membrane [7, 8].

Based on the presence and location of GAG binding sites, syndecans are sub classified into four

families: syndecans 1 to 4 [9].

Laminin and tenascin fall under the category of adhesive glycoproteins. Laminins are mainly

located in basement membranes and play a salient role in the interaction between cells and

extracellular matrix. Some studies have found association of laminins with a number of diseases

such as angiogenesis and cancer [4].

The ECM and ECM-receptor interactions are also involved in various diseases. For instance,

recently, the role of ECM-receptor interactions in cardiac fibrosis and osteoporosis was

reported [10, 11]. Also, the ECM can undergo extensive remodeling during certain pathological

conditions [12, 13, 14, 15] such as cancer, where it can drive progression [16]. Consequently,

understanding ECM protein-receptor interactions can facilitate our understanding of disease

progression and mechanisms [17]. For that reason and because ECM proteins are involved in

various signaling pathways, they are also perceived as potential druggable targets. Successful

development of drugs against specific ECMproteins holds the promise to facilitate the regulation

and treatment of many diseases [5, 18, 19].

Recently a dedicated database, MatrixDB [20], was created providing information about

ECM and GAGs (glycosaminoglycans) interactions. Despite the advances of many successful

protein-protein interaction (PPI) prediction programs, no specific method has been developed

for ECM protein-receptor interactions. In the present work, machine learning (ML) algorithms

are utilized using sequence and evolutionary features for predicting ECM protein-receptor

interactions. Various sequence and evolutionary features are included along with two different

feature vector representations. The best feature vector representation was selected and used

along with a feature selection algorithm to obtain enhanced prediction accuracy. The schematic

representation of the employed methodology is shown in Figure 1.

In addition, a comparative analysis is performed evaluating the representativeness of

negative samples in the training set using three different sampling methods: Random sampling,

k-Means sampling, and Uniform sampling [21]. Lastly, a comparison is made for the current

approach with three available state-of-the-art PPI algorithms.

MATERIALSAND METHODS

Dataset

The dataset is constructed using the KO-pathway K004512 (map04512) obtained from

Kyoto Encyclopedia of Genes and Genomes [22]. The interaction map consisted of 13 proteins

and 31 receptors with 82 known interactions (positive interactions). Accordingly, there are 403

(= 13×31) possible combinations of such extracellular proteins and receptors.Among those are
82 known interacting pairs that form the positive training dataset (seeTable S1 in Supplementary
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Fig. 1. Schematic representation of the present methodology.

Data).As per the “closedworld association” [23], all those interaction pairs that are not present in

the positive dataset are potentially negative. After eliminating the 82 interacting pairs, there are

321 pairs, which are not known to interact. Consequently, the negative training data is prepared

by randomly selecting 82 pairs from the pool of 321 non-interacting pairs. The protein-protein

interaction network for the ECM interaction pathway is shown in Figure 2.

Feature Extraction

A number of sequence-based features are calculated to include the physicochemical

properties, sequence residue order, and coupling effects:

• Amino Acid Composition (AAC): The frequencies of twenty amino acid residues

constitute the first component of the feature vector, having a dimension of 20.

• Dipeptide Composition (DPC): As simple AAC is deficient in capturing any sequence

order effect, dipeptide counts which can capture the coupling of amino acid residues is

considered as the second constituent of the feature vector, having a dimension of 400.

• Property Group Composition (PGC): The reduced representation of amino acid residues

(see Table 1) have been used previously for a number of protein prediction/classification

tasks [24, 25, 26]. This gives rise to a feature vector of 11 dimensions.

• Property Group Stretch (PGC_Stretch): To take into account the conservation of amino

acid residueswith respect to their physicochemical properties, PGC_Stretch [21] is used as

another component of the feature vector. PGC_Stretch takes into account the conservation

of stretches of physicochemical properties. A window length of 2 is used and within this
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Fig. 2. Protein-protein interaction network for the ECM interaction pathway.

window length only the identical physicochemical groups of the amino acid residues are

counted.

• Atomic Features (ATC): The composition of atoms is incorporated as the next feature

vector component, consisting of counts of Carbon (C), Hydrogen (H), Oxygen (O),

Nitrogen (N) and Sulphur (S), resulting in a 5 dimensional feature vector.

• AminoAcid Distance (AAC_Dist): The distance feature calculates the average distance of

a particular amino acid residue with all other amino acid residues present in the sequence,

for instance, for the sequence: “QWNFAGIEAAAS”, the average distance between Q and

W in the above sequence is QWaverage = 1 (as Q andW are in consecutive positions), while

the average distance between Q and A in the above sequence is QAaverage = 7.75 (Q →A

= 4, 8, 9, and 10: are the positions of A from Q and QAaverage is the average value of all

the positions). The dimension of this feature is 400.

• Property Group Combination (PG_Comb): This feature is similar to PGC_Stretch as it

uses the same 11 different amino acid residue groups for its generation. It incorporates

the sequence order information of consecutive physicochemical groups in a window of

2, resulting in a feature vector of 121 dimensions (11 amino acid property groups × 11

amino acid property groups).

• Amino Acid Factors (Factors): The amino acid factors are included as proposed in [27].

It consists of five factors resulting from multidimensional analysis of 500 amino acid

attributes incorporating the amino acid variability. Pseudo Amino Acid Composition

(PAAC): The pseudo amino acid composition feature is used to incorporate a higher order
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Table 1. Amino acid residues categorised into 11 different overlapping property groups

S.No. Amino Acid Group Amino Acids in the Specific Group

1 Tiny group Ala, Cys, Gly, Ser, Thr

2 Small group Ala, Cys, Asp, Gly, Asn, Pro, Ser, Thr and Val

3 Aliphatic group Ile, Leu and Val

4 Non-polar groups Ala, Cys, Phe, Gly, Ile, Leu, Met, Pro, Val, Trp and Tyr

5 Aromatic group Phe, His, Trp and Tyr

6 Polar group Asp, Glu, His, Lys, Asn, Gln. Arg, Ser, and Thr

7 Charged group Asp, Glu, His, Arg, Lys

8 Basic group His, Lys and Arg

9 Acidic group Asp and Glu

10 Hydrophobic group Ala, Cys, Phe, Ile, Leu, Met, Val, Trp, Tyr

11 Hydrophilic group Asp, Glu, Lys, Asn, Gln,Arg

sequence correlation that exists in each protein sequence. It is calculated with the help of

iFeature server [28] giving rise to feature vector of 50 dimensions.

• Evolutionary Features: Apart from sequence features, to incorporate the evolutionary

information into the prediction model, two types of features are calculated: AAC_PSSM

and DF_PSSM using POSSUM server [29]. The database selected for POSSUM is

Uniref50 with 3 iterations and an E-value threshold of 0.001 for BLAST search [30].

Feature Representation

Representation of protein sequences using some mathematical formulation and its

presentation to a particular machine learning algorithm is an important factor in the

development of an accurate predictor. Different feature vector representations present the

different aspects of the input data space. Here, two types of representation are used for feeding

the interacting/non-interacting pairs into the machine learning algorithms:

• Fusion of FeatureVectors (FVfusion): The two feature vectors of the protein and its receptor,

each of length 1063, are concatenated to form the final feature vector of dimension 2126.

FVfusion = (f1,f2)

• Average of feature vectors (FVaverage): For each protein-receptor pair the mean of every

feature is calculated, resulting in a feature vector of length 1063.

FVaverage = mean(f1,f2)

Classification Algorithms

Generally, an ensemble of classifiers performs better in a classification task than individual

classifiers [31]. Boosting [32, 33] and Bagging [34] are two prominent ensemble learning

methods. Boosting employs a sequential learning strategy where during each iteration, the base

learners are refined to correctly classify the hard-to-classify examples. Bagging consists of

bootstrap sampling, where each base learner is provided with a different set of training samples.

The final step consists of fusing of the classification decisions from all of the base learners.

The random forest [35] algorithm also involves bagging with random selection of features at
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each node of the base classifiers (decision trees). The decision trees are grown without pruning

and the final step consists of combining the decisions from all of the base classifiers. A boosted

version of random forest is implemented for the classification of the ECM interacting proteins,

with Real Adaboost as the meta classifier and random forest as the base classifier [36].

Further a comparison is made for the performance of RARF with six other machine

learning algorithms: Naïve Bayes (NB) [51], Random Forest (RF) [52], Bagging [53],

k-Nearest Neighbors (k-NN) [54], Support Vector Machines [55] implemented with sequential

minimization optimization and Radial Basis Function Kernel (SMO-RBF) [56, 57] and Rotation

Forest (ROF) [58].

Representative Sampling Methods

Previous works [26, 37, 38] have emphasized the importance of having representative

samples in the training dataset. Ideally, the training data set should cover the entire input space,

so that the classification algorithm can learn all the different types of patterns. Three sampling

methods are implemented: k-Means sampling, Uniform sampling, and Random sampling

methods for inclusion of representative negative training data.

k-Means Clustering

The purpose of the k-Means algorithm [39, 40] is to find natural groupings among the

samples which can be further used for representative sampling (i.e. selection of representative

samples). k-Means clustering is used to cluster the non-interacting proteins and select

representative samples for the construction of the training set. The value for k (a parameter

determining the number of clusters/groups) is selected equivalent to the number of positive

samples (i.e. the number of interacting proteins). From each cluster, one sample is selected for the

training set. The clustering algorithm is used to create a representative training dataset covering

the full input space.

Uniform Sampling

The Uniform sampling implemented in the present work is based on the Kennard-Stone

algorithm [41]. The aim of Uniform sampling is the selection of representative samples

uniformly covering the input space. First, the mean of the data is calculated and the sample,

which has the minimum distance (Euclidean distance) to the data mean, is drawn into the

representative set. Next, all other samples are selected in an iterative manner, selecting those

into the representative sample set that are farthest away from the samples already selected.

Feature Selection

Feature selection reduces the original full feature set, retaining only highly informative and

non-redundant features. Most of the times implementation of feature selection algorithms results

in enhanced prediction performance. The ReliefF [42, 43] feature selection algorithm is used in a

stepwisemanner (increasing the number of features in steps of 100) for obtaining amore accurate

model.All the machine learning algorithms and the feature selection method are simulated using

the Java-based machine learning platform-WEKA [44].

MODELPERFORMANCE VALIDATION

Five-fold cross validation is employed for evaluating the trained prediction models. In

five-fold cross validation, a single fold is reserved as a testing set while the remaining four

are used as the training set. The process continues until all the folds are used once as a testing

set.
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Model Performance Evaluation Metrics

• Sensitivity: It is the percentage of correctly predicted ECM interacting proteins.

Sensitivity =
TP

TP + FN
× 100 (1)

• Specificity: It is the percentage of correctly predicted ECM non-interacting proteins.

Specificity =
TN

TN + FP
× 100 (2)

• Accuracy: It is the percentage of correctly predicted ECM interacting proteins and

non-interacting proteins.

Accuracy =
TP + TN

TP + FP + TN + FN
× 100 (3)

• Area under ROC (AUC): AUC [45, 46] is used to describe ROC (receiver operating

characteristic) curves and it is a threshold dependent metric. It can take values from 0

to 1. The closer its value to 1, the better the prediction model.

• Mathews Correlation Coefficient (MCC): It is a performance evaluation metric for two

class classification scenarios, where its value ranges from −1 to +1. Obtaining MCC

values closer to 1 is deemed to be better for trained prediction models.

MCC =
(TP × TN)− (FP × FN)√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)
(4)

RESULTSAND DISCUSSION

Table 2. Performance evaluation metrics of different machine learning algorithms using fusion of

feature vectors

All Features (Fusion of feature vectors)

Sensitivity Specificity Accuracy MCC AUC

NB 82.9 43.9 63.4 0.291 0.660

RF 59.8 69.5 64.6 0.294 0.718

Bagging 63.4 65.9 64.6 0.293 0.669

IBK 72.0 54.9 63.4 0.272 0.626

SMO-RBF 43.9 58.5 51.2 0.025 0.512

ROF 58.5 69.5 64.0 0.282 0.683

RARF 61.0 73.2 67.1 0.344 0.730

Avg. of all classifiers 63.0 62.2 62.6 0.257 0.656

Table 2 presents the performances of various machine learning algorithms using the fusion

of feature vector strategy (FVfusion). In terms of accuracy, specificity, MCC and AUC, boosted

random forest (RARF) performed much better than all other learning algorithms.

In Table 3, the performances of the various machine learning algorithms using the average

of feature vector strategy (FVaverage) is presented. The highest accuracy of 70.7 % with 0.767
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Table 3. Performance evaluation metrics of different machine learning algorithms using average

of feature vectors

All Features (Average of feature vectors)

Sensitivity Specificity Accuracy MCC AUC

NB 82.9 28.0 55.5 0.131 0.614

RF 69.5 65.9 67.7 0.354 0.739

Bagging 73.2 61.0 67.1 0.344 0.680

IBK 78.0 56.1 67.1 0.342 0.741

SMO-RBF 56.1 76.8 66.5 0.337 0.665

ROF 68.3 65.9 67.1 0.342 0.739

RARF 69.5 72.0 70.7 0.415 0.767

Avg. of all classifiers 71.0 60.8 67.1 0.344 0.730

AUC is obtained by RARF as the classifier. In both feature vector representations (FVfusion and

FVaverage), RARF performed superior in comparison to all other algorithms.

As per the “No free lunch theorem”, no classification algorithm is the most suitable for all

the datasets [50] . As the representation of the training data varies, so do the performances of

the classification algorithms. Higher accuracies are achieved by some classification algorithms

using fusion representation and AAC, PGC, PGC_Stretch, AC, AAC_PSSM, DF_PSSM,

Factors and PAAC feature sets, while FVaverage performed better withAAC_Dist and PG_Comb

feature sets (see Tables S2 and S3 in Supplementary File). However, when the full feature

set is used, better performance metrics are obtained for all the classification algorithms using

FVaverage. Also, FVaverage resulted in better accuracy than FVfusion. In terms of accuracy, the

RARF classifier obtained the highest accuracies in both feature representation schemes (67.1 %

and 70.7 % using FVfusion and FVaverage respectively). On the full feature set, all classification

algorithms except NB performed better using FVaverage. Of note, SMO-RBF achieved higher

specificity than RARF. A gain of 8 %, 3.3 %, 6.6 %, and 5 % are observed for mean sensitivity,

mean accuracy, mean MCC, and mean AUC, respectively, when using FVaverage.

Table 4. Performance evaluationmetrics of RARF on ReliefF based feature selection using average

of feature vectors

RARF+ReliefF

No. of features Sensitivity Specificity Accuracy MCC AUC

10 68.3 61.0 64.6 0.293 0.707

100 72.0 68.3 70.1 0.403 0.729

200 74.4 70.7 72.6 0.452 0.752

300 73.2 69.5 71.3 0.427 0.762

400 74.4 68.3 71.3 0.428 0.764

500 73.2 69.5 71.3 0.427 0.764

600 70.7 68.3 69.5 0.390 0.768

700 72.0 70.7 71.3 0.427 0.772

800 70.7 67.1 68.9 0.378 0.772

900 70.7 70.7 70.7 0.415 0.768

1000 72.0 67.1 69.5 0.391 0.772
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With the full feature set, RARF obtained the highest accuracy using FVaverage. Therefore,

RARF is also used to identify the most relevant features using the ReliefF algorithm. The

performances of RARF with incremental feature sets are presented in Table 4. When increasing

the number of features from 10 to 200, an increase in all performance evaluation metrics

is observed. Beyond 200 features, a decreasing trend in performance evaluation metrics is

observed. The best performance evaluation metrics is obtained with the top 200 features

achieving 72.6 % accuracy, 74.4 % sensitivity and 70.7 % specificity.

To evaluate the representativeness of negative samples in the training set three different

sampling methods are implemented: Random Sampling, k-Means Sampling and Uniform

Sampling. Table 5 presents the performances of RARF on 5 runs of 5-fold cross validation for

Random Sampling and k-Means Sampling. The top 200 features are used as the feature set. As

uniform sampling does not involve any random seed generation step, it is performed for a single

run.

Using k-Means Sampling, RARF achieved 75.5 % accuracy as compared to 72.9 % on

random sampling and 73.2 % on uniform sampling, using 5 runs of 5-fold cross validation.

Except for specificity, k-Means based sampling resulted in an enhanced performance for RARF

as compared to random and uniform sampling methods. In terms of sensitivity, accuracy,

MCC, and AUC, RARF achieved higher values when trained on representative training sets

obtained using k-Means and uniform sampling as compared to random sampling. However,

when considering only specificity, Random Sampling performed better than k-Means and

Uniform Sampling.

Table 5. Performance evaluation metrics for RARF on 5 × 5 fold cross validation for Random

sampling and k-Means sampling and single run of 5 fold cross validation for Uniform sampling

RARF+ReliefF

Random Sampling

Run Sensitivity Specificity Accuracy MCC AUC

1 74.4 70.7 72.6 0.452 0.752

2 82.9 74.4 78.7 0.575 0.834

3 76.8 70.7 73.8 0.476 0.780

4 70.7 68.3 69.5 0.390 0.742

5 72.0 68.3 70.1 0.403 0.755

Average 75.3 70.4 72.9 0.459 0.772

k-Means Sampling

Run Sensitivity Specificity Accuracy MCC AUC

1 82.9 65.9 74.4 0.495 0.803

2 82.9 65.9 74.4 0.495 0.803

3 76.8 67.1 72.0 0.411 0.773

4 86.6 70.7 78.7 0.581 0.813

5 85.4 70.7 78.0 0.567 0.813

Average 80.8 68.1 75.5 0.598 0.801

Uniform Sampling

Sensitivity Specificity Accuracy MCC AUC

79.3 67.1 73.2 0.467 0.785

The performance evaluation metrics of all the machine learning algorithms tested here with

individual feature sets are summarized in Tables S2 (FVfusion) and S3 (FVaverage). The ROCs of
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the ML algorithms on the 200 best features is presented in Figure 3.

Fig. 3. ROCs of different machine learning algorithms on best feature subset (200 features) using

average of feature vectors.

Further three PPI predictors are used to test their accuracy for predicting the ECM PPIs:

PSOPIA* [47], TRI_tool† [48] and iLoops [49]

The PSOPIA server was trained on 43,060 high confidence direct (physical) PPIs and

33,098,951 negative PPIs. Both the positive and negative interactions are used for testing the

server. Of note, this server is unable to process sequences of more than 3000 residues, but the

positive dataset consisted of two proteins which are over 3000 residues in length. Consequently,

three positive PPI interactions were not processed (see supplementary material 2).

The following confusion matrix is obtained from which sensitivity, specificity and accuracy

values are calculated:

T F

T 9 (TP) 70 (TP)

F 4 (TP) 78 (TP)

Therefore, sensitivity = 11 %, specificity = 95 %, and accuracy = 54 %.

The TRI_tool gave the following confusion matrix:

T F

T 9 (TP) 73 (TP)

F 3 (TP) 79 (TP)

*mizuguchilab.org/PSOPIA
†www.vin.bg.ac.rs/180/tools/tfpred.php
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Thus, sensitivity = 10.9 %, specificity = 96.3 % and accuracy = 53.65 % (see supplementary

material 3).

From the above results, it can concluded that both of these PPI predictors are better at

predicting non-interactions than ECM interactions. Overall, the accuracy is skewed towards

non-interacting protein pairs.

Further, another PPI prediction method iLoops server is also evaluated using the 82 positive

and negative PPIs. Out of those positive interactions, the server returned prediction results for

54 PPIs. For the remaining 28 PPIs the server returned “No interaction signatures/ no protein

features”. Out of those 54 PPIs, 38 were predicted correctly (true positives). Further, out of

82 non interacting PPIs (true negatives), the server returned results for 34 interactions. For the

remaining 48 PPIs, the server returned “No interaction signatures/ no protein features”. For the

82 true negatives, only 8 were correctly predicted.

The resulting confusion matrix is shown below:

T F

T 38 (TP) 16 (TP)

F 26 (TP) 8 (TP)

Thus, sensitivity = 70.3 %, specificity = 23.5 % and accuracy = 52.2 %.

Although the sensitivity of iLoops (70.3 %) is better than the sensitivity of PSOPIA (11 %)

and TRI_tool (10.9 %), significant numbers of interacting and non-interacting PPIs were not

classified, effectively resulting in accuracies of 46.34 % and 9.7 % for the interacting and

non-interacting classes, respectively.

In comparison, the current specialized ECMpredictor provides an acceptable sensitivity with

balanced accuracy. ECM-receptor interaction are only a very small fraction of all PPIs and hence

it is well possible that in larger PPI datasets, the small subgroup of ECM-receptor interactions

does not get proper consideration, i.e. their representation in the training sets gets diluted, such

that ML algorithms don’t have an opportunity to learn this specialized group of PPIs.

One of the limitations of any protein-protein interaction prediction problem is the selection

of true negatives, as the experimental non-interaction data is not readily available. Further

the dimension of feature vector can be reduced using representative learning techniques such

as autoencoders which may facilitate in obtaining better performance evaluation metrics with

reduced training time.

CONCLUSION

Understanding the ECM-receptor interaction can enable and speed up our understanding

of cancer progression as well as ECM-mediated mechanisms of other diseases. Sample

representation is an important parameter in classification tasks. The way we feed the sequences

using some mathematical formulation presents a different aspect of the prediction tool and plays

an important role in acquiring higher predictive accuracy. In the present work, two different types

of feature representation are compared: fusion of feature vectors (FVfusion) and average of feature

vectors (FVaverage) for predicting interacting versus non-interacting protein pairs. FVaverage

performed comparatively better than FVfusion. Boosted random forest performed best among all

classifiers. For both feature vector representations (FVfusion and FVaverage), the RARF algorithm

performed better than the base classifier RF, more so in terms of specificity and accuracy.

The step wise increase of the number of features using the ReliefF feature selection algorithm

resulted in improved prediction accuracy. A comparative analysis evaluating the effectiveness

of representativeness of negative training samples when using random sampling, k-Means

sampling, and Uniform sampling showed that k-Means sampling and the subsequent generation
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of a diversified training set is advantageous in comparison to random sampling and Uniform

sampling as it resulted in enhanced prediction accuracy for ECM-receptor interaction prediction.

On comparison with three state of the art PPI predictors, it is observed that PPI predictors lack

accuracy in identifying ECM-receptor interaction (sensitivity) but show relatively high accuracy

in identifying non-interactions (specificity).The current work presents the first machine learning

based prediction model specifically developed for ECM protein-receptor interactions.
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