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Abstract: By producing the required proteins, the process of gene expression 

establishes the physical properties of living things. Gene expression from DNA or 

RNA may be recorded using a variety of approaches. Regression analysis has evolved 

in prominence in the area of genetic research recently. Several of the genes in high 

dimensional gene expression information for statistical inference may not be related to 

their illnesses, which is one of the major problems. The ability of gene selection to 

enhance the outcomes of several techniques has been demonstrated. For censored 

survival data, the Cox proportional hazards regression model is the most widely used 

model. In order to identify important genes and achieve high classification accuracy, a 

new technique for selecting the tuning parameter is suggested in this study using an 

optimization algorithm. According to experimental findings, the suggested strategy 

performs much better than the two rival methods in terms of the area under the curve 

and the number of chosen genes. This study provides a comprehensive assessment of 

the latest work on performance evaluation of regression analysis in gene selection. In 

addition to its performance analysis, this research conducts a thorough assessment of 

the numerous efforts done on various extended models based on gene selection in 

recent years. 

 

Key words: Cox regression model; penalized method; gene selection; crow search 

algorithm. 

 

INTRODUCTION 

Gene selection is a method used to reduce the quantity of duplicated, under-expression, or 

uninformative genes in a gene expression dataset, such as a DNA microarray. Gene choice 

depends on the Feature Selection approach based on regression analysis, which is ideally suited 

for applications requiring thousands of characteristics. Identifying the relevant and expressing 

genes and getting rid of the redundant genes from the original space are the two major goals of 

using gene selection techniques. The model's performance should decline as the number of genes 

increases, and overfitting might undermine the generalization. Focusing on relevance, 

redundancy, and complementarity is necessary to achieve meaningful results. When a gene 

provides critical details about a certain class, either alone or in combination with some other 

genes, it is deemed significant. The feature subset can be divided into very relevant, mildly 

relevant, and unimportant in technical terms. Strongly relevant, weakly relevant and non-

redundant features are where one will find the majority of the significant attributes. 
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The problem of analyzing time-to-event data arises in a number of applied fields, such as 

medicine, biology, public health, and epidemiology [1, 2]. Nowadays, high dimensional gene 

expression data are increasingly used for modeling various clinical outcomes to facilitate disease 

diagnosis, disease prognosis, and prediction of treatment outcome [3].  

Regression modeling is a standard practice to study jointly the effects of multiple predictors 

on a response. The Cox proportional hazards model is ubiquitous in the analysis of time-to-event 

data. When the number of predictors is large, building a Cox proportional hazards model 

including all of them is undesirable because it has low prediction accuracy and is hard to 

interpret [4, 5]. For these reasons, variable selection has become an important focus in Cox 

proportional hazards modeling.  

Penalized methods are very effective variable selection methods. These methods combine the 

Cox proportional hazards model with a penalty to perform variable selection and estimation 

simultaneously. With deferent penalties, several Cox proportional hazards models can be 

applied, among which are, LASSO, which is called the least absolute shrinkage and selection 

operator [6], smoothly clipped absolute deviation (SCAD) [7], elastic net [8], and adaptive 

LASSO [9]. Unquestionably, LASSO is considered one of the most popular procedures in the 

class of penalized methods. However, LASSO has a limitation: It applies the same amount of the 

penalty to all variables. Thus, it is an inconsistent variable selection method [9–11].  

In general, methods for classifying the genomic information such as the signal-to-noise ratio 

(SNR) method, the partial least squares method, the Pearson correlation coefficient method and 

the t-test statistic method [12], typically use a set of criteria pertaining to the correlation extent to 

prioritize and select key genes. DNA microarray computer modeling also employs autonomous 

principal components analysis. Researcher conducted a rigorous and thorough examination of 

various key algorithms [13] in order to outfit the system with the optimal setting of 

classification, genetic identification, and cross-validation procedures. 

Comparing BagBoosting [14] against a number of well-known class classification techniques 

for microarray data demonstrates the estimates of the future. Moreover, it offers to consolidate 

the classification performance of the rules for trustworthy predictions after discovering a variety 

of noteworthy and diverse rules using high-dimensional profile data. Low-ranked characteristics 

are present in the identified rules that were occasionally required for classifiers to reach 100% 

accuracy. Three alternative supervised machine learning algorithms, including boosted decision 

trees and C4.5 decision trees [15], have been the subject of some prior research on the 

categorization. They have examined the classification and prediction performances of various 

techniques using classification tasks on seven freely accessible neoplastic genetic analyses. 

The relevant attributes are preserved with the use of feature selection. Most often, feature 

selection is used with high-dimensional statistical data. In disciplines like RNA sequencing and 

DNA microarray, in which there are too many characteristics and not enough samples, feature 

selection is quite helpful [16]. To extract the relevant selected features from the initial feature 

space, the main goal of feature selection, which has recently gained popularity. Techniques for 

feature selection help in managing the dimensionality, better interpreting the feature space, 

increasing prediction accuracy, and shortening the length of the modeling training phase. The 

result of feature selection, which aids in the prediction step is the optimum quantity of attributes 

that are pertinent to the specified classification model. 

The process of turning the initial feature region into a prominence region, which might be a 

straight or non-linear collection of the initial space of features, is known as feature extraction. 

The main disadvantage is that it drastically changes the original feature space, which ultimately 

makes the data unintelligible. The transition is typically pricey as well. The representative 

sample is inadequate, and the gene expression data is extremely dimensional on the other 

extreme. The data's high degree of dimensionality is a result of the thousands of values produced 

for each gene in a genome. A gene's thousands of molecules may be analyzed in a specific 

sample with the use of sophisticated technology like microarray. Nevertheless, the drawback of 

microarray is its high cost [17]. 
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The notions of unmonitored, supervising, and semi-supervised feature selection are essential 

since information about gene expression is often unmarked, labelled, or semi-labelled. 

Unsupervised learning seems to have no prior knowledge of the capabilities; yet, based on 

distribution, variability, and specificity, it verifies gene selection. Meaningful classification 

methods and details about the functionality are part of the labelled data. Then, depending on the 

relevancy and significance score of the designated traits, gene selection will be carried out. 

Combining a little quantity of unlabeled data with labelled data and vice versa adds extra 

information in the semi-supervised or semi-unsupervised model. The significance of features or 

gene selection for a better outcome is discussed in this work [18]. The remaining portions 

discuss the background and progression of feature selection, the overall concept in feature 

selection, a thorough analysis of numerous works on gene selection in the literature, unresolved 

problems, and possible future study directions related to the gene expression data. The 

generalized representation of gene selection is depicted in Figure 1. 

 
Fig 1. Simpler depiction of gene selection. 

 

To increase the power of informative gene selection, in the present study, an adaptive Cox 

proportional hazards model is proposed. More specifically, a new weight inside LASSO is 

proposed, which can correctly reduce the estimation error. This weight will reflect the 

importance amount of each gene. Experimentally, comparisons between our proposed gene 

selection method and other competitor methods are performed. The experimental results prove 

that the proposed method is very effective for selecting the relevant genes with high prediction 

accuracy.  

PANELIZED COX PROPORTIONAL HAZARDS MODEL 

Survival analysis is the statistical branch studying time-to-event data, or, more precisely, the 

time elapsing from a well-defined initiating event to some particular endpoint. The Cox 

proportional hazards regression model is one of the most popular and useful models in survival 

analysis [19].  

Consider an analysis with time-to-event outcome, we denote the observed triplet as 

{( , , ) : 1,......, }i i it x i n   where it  is the survival time if 1i   and censored time if 0i  , and 

1( ,...... )i i ipx x x  is a p-dimensional explanatory variables. Under the proportional hazards 

framework, the Cox proportional hazards model (CPHM) can be defined as 

      0| exp ,T

i i i ih t x h t x    (1) 
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where  0 ih t  is the baseline hazard function, and 
1( ,..., )T

p     is a ( 1p )-vector of unknown 

regression coefficients. Assuming that the subjects are statistically independent of each other, the 

joint probability of all realized events is the following partial likelihood  
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where iR  is the set of subjects that are at risk just before time it .  

The estimation of the regression parameters of Eq. (1) is commonly carried out by 

minimizing the partial log likelihood function (Eq. (2)) as 
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Panelized Cox proportional hazards model (PCPHM) adds a nonnegative penalty term to Eq. 

(1), such that the size of variable coefficients can be controlled. Several penalty terms have been 

discussed in the literature considering the Cox proportional hazards model [20-37]. The LASSO 

method, proposed by Tibshirani [6], is one of the popular penalty terms. The LASSO performs 

variable selection and estimation simultaneously by constraining the log-likelihood function of 

variable coefficients. Generally, the PCPHM is defined as 
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where ( )P   is the penalty term that regularized the estimates. The penalty term depends on the 

positive tuning parameter, 0  , which controls the tradeoff between fitting the data to the 

model and the effect of the regularization. In other words, it controls the amount of shrinkage. 

For the 0  , we obtain the CPHM solution in Eq. (3). In contrast, for large values of  , the 

influence of the penalty term on the coefficient estimates increases.  

Without loss of generality, it is assumed that the explanatory variables are standardized, 
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   . The estimation of the vector   using 

LASSO is obtained by minimizing Eq. (4) as [31–33] 
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      (5) 

Equation (5) can be efficiently solved by the coordinate descent algorithm [41].  

The LASSO has an advantage in that it is computationally feasible in high-dimensional data.  

CROW SEARCH ALGORITHM 

The crow search algorithm is one of the most recent evolutionary algorithms inspired from 

the social behavior of the crow. This algorithm was introduced in 2016 by Askarzadeh [42]. A 

novel kind of optimization using swarm intelligence entity is crow search algorithm was 

developed by imitating the clever behavior of crows in concealing and scavenging for food. The 

method features a straightforward structure, a small number of process variables, and 

uncomplicated implementations. The crow is a remarkably intelligent bird that can recall human 

faces and alert its species of impending danger. The capacity of crows to conceal feed and 

recollect the placements of the concealed sustenance represents one of the most blatant examples 

of their cunning. They will accompany one another simultaneously in search of a better food 

supply, but if a crow discovers that other crows are following it, it will attempt to move the 

location of its food to prevent food stealing.  

The following are the crow search optimizer's capabilities: 
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Setting the input values for the crow search optimizer's variables, which primarily encompass 

the population levels, repetitions, flying step size, and sensitivity probabilities. 

The storage matrices and individual crows are then initialized, and crows are then created in 

the search area where every one of which represents symbolizes a potential solution to a specific 

issue. It is presumed that the initial memory matrix represents the beginning location because the 

initial population lacks experience. 

The fitness function's efficiency of each crow is then assessed by creating a new location for 

every crow in the search area. This is accomplished by presuming that a crow would follow 

another crow arbitrarily in an effort to locate where it will discover its hidden food. 

It may be capable of determining a position in two situations relying on the crow's position 

update. The first crow is unaware of the ones that really are trailing it. Following, if it discovers 

the one after, it will assign the pursued crow a random place.  

In CSA, the idea is motivated from the storing process of the excess food in hiding places 

then restoring it in the necessary time. It is known that the crow is very intelligent bird that 

observes the others hide their food and steal it once they leave. After committing the theft, it 

hides to avoid being a victim in the future. It is assumed that a flock of cn  crows, the crow 

number i  has position at iteration t  is 
t

ix . The hiding place of the food followed by crow i  is 

memorized. Crow moves in the search plane and tries to find the best food source, which is 

defined as
t

iM . The searching approach in CSA has two probable scenarios; the first one is that 

the owner crow j of food source 
t

jM  does not know the thief crow i  follows it therefore the 

thief crow reaches to the hide place of owner crow. The updating process of the crow thief 

position is done by 

 1 ( ), 1,2,... ,t t t t

i i j i cx x f x il nM        (6) 

where fl  is the flight length and   is a random number in the interval [0,1] .  

The second scenario is that the owner crow j  knows that the thief crow i  follows it 

therefore, the owner crow will deceive crow i  by going to any another position of search space. 

The position of crow i  is updated by a random position. In CSA, the scenario is determined by 

the following expression: 

 1
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     (7) 

where   a random number in the interval [0,1]  and AP is the probability of awareness.  

THE PROPOSED METHOD 

In the context of gene expression data problems, the goal of gene selection is to improve 

prediction performance, to provide faster and more cost-effective genes, and to achieve a better 

knowledge of the underlying problem. High dimensionality can negatively influence the 

performance of the Cox proportional hazards regression model by increasing the risk of 

overfitting and lengthening the computational time. Therefore, removing irrelevant and noisy 

genes from the original microarray gene expression data is essential for applying Cox 

proportional hazards regression model to analyze the microarray gene expression data. 

A crucial part of variable selection and model estimation using the penalized methods is the 

selection of the tuning parameter. In practice the tuning parameter,  , has to be chosen by a data 

driven procedure [11, 43, 44]. This can be achieved by using cross-validation or generalized 

cross-validation. These criteria can be defined as 
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where ( )
ˆ

iy   is the fitted values and iis is the i-th diagonal element of the hat matrix, S , of the 

selected predictors, where 1

( )
ˆ[ ( )]T LASSO T

Cox



  S X X X Σ X . 

It is worth mentioning that CV and GCV method is greatly dependent on the fold assignment 

process, which leads to large variability in selecting the shrinkage parameter value and, 

consequently, will negatively affect the prediction performance of the penalized Cox regression 

using LASSO. This is happen because repeating the observations assignment to folds might 

result in significantly different values of  [45, 46]. 

For LASSO penalty, we have one parameter,  . This tuning parameter treated as a position 

in BA.  Specifically, our improving of penalized regression model is depending on giving a wide 

search space for the values with less time. Consequently, the steps of our proposed improving 

are as: 

Step 1: The number of agents is 30nc   and the maximum number of iterations is max =100t .  

Step 2: The positions of each patient are randomly specified. For the  , the position is 

randomly generated from uniform distribution (0,50)U .  

Step 3: The fitness function is defined as  
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n

i i

i

y y
n 

 
  

 
     (10) 

where the fitness is calculated for the testing dataset.  

Step 4: The positions of the agent are updated using Eq. (7). 

Step 5: Steps 3 and 4 are repeated until a maxt  is reached. 

REAL APPLICATION 

“To evaluate the performance of the proposed method, three real gene datasets were used. A 

brief introduction and summary of the used datasets are given in Table 1. The first dataset is the 

Diffuse large B-cell lymphoma dataset (DLBCL) [47]. There are 240 lymphoma patients’ 

samples. Each patient’s data consists 7399 gene expression measurements, and its survival time, 

including censored or not. 

The second dataset is the Dutch breast cancer dataset (DBC) [48]. In this dataset, there was 

295 breast cancer patients’ information collected in this dataset. Each patient’s data consist 4919 

gene expression measurements. 

The third dataset is the Lung cancer dataset (LC) [49]. This dataset contains 86 lung cancer 

patients’ information including 7129 gene expression measurements, survival time and whether 

the survival time is censored. 
 

Table 1. The details of the three used real microarray datasets 

Dataset Sample Gene Censored 

DLBCL 240 7399 102 

DBC 295 4919 207 

LC 86 7129 62 
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To demonstrate the usefulness of the proposed method, comparative experiments with the 

CV and GCV are conducted. To do so, each gene expression dataset is randomly partitioned into 

the training dataset and the test dataset, where 70% of the sample is selected for training dataset 

and the rest 30% are selected for testing dataset. For a fair comparison and for alleviating the 

effect of the data partition, all the used methods are evaluated, for their classification 

performance metrics using 10 folds cross validation, averaged over 100 partitioned times. 

Depending on the training dataset, the tuning parameter value,  , for each used method was 

fixed as 0 50   . To assess how well the model predicts the outcome, the idea of time-

dependent receiver-operator characteristics (ROC) curves for censored data and area under the 

curve (AUC) as our criteria. The real application results are summarized in Tables 2–4.  

The Table 2 and the Figure 2 show the average results of different used methods applied to 

the three real datasets. Obviously, the number of genes selected by CV is much larger than that 

of GCV and the proposed method. Between the other two methods, the proposed method 

selected the least subset of genes. For example, in LC dataset, the proposed method selected 21 

gens out of 7129 genes comparing to 61 and 75 selected genes by GCV and CV, respectively.  

 
Table 2. The selected genes results 

Dataset CV GCV Proposed 

DLBCL 122 94 54 

DBC 87 44 32 

LC 75 61 21 

 

 
Fig.2. Selected gene results. 

 

In order to test the prediction accuracy of the different used methods, their average values of 

AUC for both the training and testing dataset are given in Tables 3 and 4, respectively. In the 

observation of Table 3 and figure 3, in terms of AUC, the proposed method achieved a 

maximum accuracy of 95.8%, 96.7% and 97.1% for DLBCL, DBC, and LC datasets, 

respectively. Furthermore, it is clear from the results that the proposed method outperformed the 

GCV for all datasets. This improvement in AUC is mainly due to the proposed method ability in 

taking into account the new weight. Moreover, the proposed method improved the classification 

accuracy compared to CV. The improvements were 8.5%, 7.7%, and 7.3% for the DLBCL, 

DBC, and LC datasets, respectively. 
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Table 3. The AUC results for the training dataset 

Dataset CV GCV Proposed 

DLBCL 0.871 0.912 0.958 

DBC 0.884 0.924 0.967 

LC 0.901 0.937 0.971 

 

 

 
Fig 3. Results of AUC for the training dataset. 

 

It can also be seen from Table 4 and Figure 4 that the proposed method has the best results 

in terms of the AUC for the testing dataset. The proposed method has the largest AUC of 93.8%, 

94.9%, and 95.6% for the DLBCL, DBC, and LC datasets, respectively. This indicated that the 

proposed method significantly succeeded in identifying the patients who are in fact having the 

cancer with a probability of greater than 0.93.  

 

 
Table 4. The AUC results for the testing dataset 

Dataset CV GCV Proposed 

DLBCL 0.854 0.905 0.938 

DBC 0.814 0.911 0.949 

LC 0.882 0.923 0.956 
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Fig. 4. Results of AUC for the testing dataset. 

 

CONCLUSION 

Regression modelling is frequently used to evaluate how numerous factors interact to 

produce a result. In the examination of time-to-event data, the Cox proportional hazards model is 

frequently used.  Building a Cox proportional hazards model with every predictor is undesirable 

when there are many predictors since it has poor prediction accuracy and is challenging to grasp. 

These factors have led to a significant shift in the importance of variable selection in Cox 

proportional hazards modelling. In reality, the traditional Cox regression algorithms only 

consider choosing one biomarker, disregarding the high association between genes. Even though 

network-based Cox regression techniques circumvent these issues, the life science field uses 

these network-based methods less frequently. This work introduces the penalized Cox 

proportional hazards regression model, which combines the Cox proportional hazards regression 

model with the LASSO, to identify the significant genes in gene expression data. A unique 

approach to selecting tuning parameters, motivated by natural processes, was proposed. The 

crow search approach was used for this particular endeavor. Comparisons with existing methods 

and experimental analysis of our proposed strategy involve higher predictive power of the 

recommended technique was shown by the AUC. In fact, we demonstrated that, given an 

insignificant number of variables, all the approaches under consideration could choose the 

changed genes in various simulated conditions. On the other hand, the analysis demonstrated that 

it is possible to find gene signatures with a precise prognosis capability by integrating network 

information with tuning parameters into Cox regression algorithms.  

The results of this study have several significant implications for current and future clinical 

practice. First, in order to condense the size of the feature space to a reasonable scale, a study 

based on a quick screening technique might be developed. To incorporate biological data into 

statistical screening analysis and give a more certain picture of the gene-regulatory networks, 

various screening approaches could actually be merged. Secondly, adding clinical data and data 

from other omics to the screening process may also result in research that is more thorough and 

avoid the shortcomings of the current approaches. Additionally, a proteome-scale map of the 

human binary interactome can be compared to alternative network maps to provide a deeper 

knowledge of the relationships between genotype and phenotype, allowing for a more accurate 

biomarkers investigation. Finally, in order to turn this methodological framework into a useful 

tool, it will be important to create a user-friendly interface. 
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