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Abstract. Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that 

poses a significant global health threat, marked by a substantial increase in prevalence 

and mortality rates. Accounting for 90 % of pancreatic cancer cases, PDAC carries a 

dismal prognosis, and current therapeutic approaches, including immunotherapy, face 

challenges due to poor immunogenicity. This study aimed to discover differentially 

expressed immune genes shared between PDAC and normal samples from two 

datasets obtained from the NCBI GEO Dataset. The RNA-seq pipeline was employed 

for gene expression analysis, and enrichR facilitated functional enrichment analysis of 

biologically and statistically significant genes. Predictions of immune infiltration cells 

and corresponding genes, along with their immune responses, were made using the 

ScType database and the immunedeconv package, respectively. Verification of gene 

expression levels was conducted through GEPIA2, Expression Atlas, and literature 

review. Additionally, isoform-switching analysis of dysregulated genes aimed to 

uncover alternatively spliced pathogenic isoforms in PDAC. Notably, four immune 

genes (EPHA2 upregulated, GNG11, CRHBP, and FCER1A downregulated) were 

found to be common in both datasets and were highly implicated in PDAC. The 

dysregulated immune genes influenced molecular functions, including protein binding, 

transmembrane receptor protein tyrosine kinase activity, protein tyrosine kinase 

activity, and cadherin binding for upregulated genes. Downregulated genes were 

associated with GTPase activity and ribonucleoside triphosphate phosphatase activity. 

This study suggests these immune genes as potential prognostic biomarkers for 

effective PDAC treatment. However, further investigations are essential to unravel the 

functional perspectives of potential isoforms. 
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INTRODUCTION 

One lethal malignancy is pancreatic cancer characterized by the development and growth of 

cancer cells within the pancreatic tissues [1]. Classified as the seventh most common cancer-

related mortality globally, it presents challenges due to poor survival rates and difficulties in 

early diagnosis [1, 2]. According to pancreatic cancer data from GLOBOCAN 2020, there were 

495,773 new cases reported, with 466,003 recorded deaths across both sexes. The age-

standardized incidence rate of pancreatic cancer is 5.7 in men and 4.1 in women per 100,000 

persons, underscoring its higher prevalence in men worldwide. Additionally, Asia has witnessed 

the highest incidence (47.1 %), mortality (48.1 %), and 5-year prevalence (47.4 %) rates [3]. 

Pancreatic malignancies are categorized into benign and malignant neoplasms. Benign 

neoplasms encompass serous cystadenoma, intraductal tubulopapillary neoplasm, intraductal 
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papillary mucinous neoplasms, and mucinous cystic neoplasms [4]. Conversely, malignant 

neoplasms are further classified into those of ductal origin and non-ductal origin [5]. 

Among all pancreatic malignancies, pancreatic ductal adenocarcinoma (PDAC) in the 

exocrine pancreas stands out as the most common and aggressive form of pancreatic cancer [6]. 

PDAC constitutes a staggering 90 % of overall pancreatic cancer cases and is associated with a 

poor prognosis [7, 8]. Predominantly occurring in the head of the pancreas, PDAC often involves 

the duodenum or ampulla, presenting challenges in pinpointing its exact origin [9]. 

Numerous well-established studies have identified PDAC as being frequently associated with 

a mutation in the oncogene KRAS, marking it as the most common genetic cause. Other 

commonly mutated genes include the tumor suppressors SMAD4, CDKN2A, and TP53 [10, 11]. 

Despite its asymptomatic nature in its early stages, PDAC progresses rapidly, and non-specific 

symptoms such as jaundice, nausea, fatigue, weight loss, and abdominal and back pain become 

evident [12, 13].The manifestation of perineural and vascular channel invasion in PDAC 

contributes to its extensive spread, underscoring its inherently aggressive nature [9]. 

Furthermore, the lack of immune activation and low immunogenicity are linked to the aggressive 

behavior of PDAC [14]. 

Recent cancer immunotherapy, considered an effective therapeutic approach, has faced 

challenges in achieving success against PDAC due to its poor immunogenicity, immunological 

tolerance, and the presence of an immunosuppressive microenvironment [15, 16]. Within the 

tumor microenvironment of PDAC, macrophages and immature myeloid cells have been 

identified as cells that promote tumor growth. Additionally, the interaction between pancreatic 

cancer cells and stromal cells has been linked to various malignant characteristics of PDAC, 

including proliferation [17]. The intricate interactions between immune and tumor cells in this 

disease, crucial for understanding cancer progression and evasion, remain not clearly understood 

[18]. 

Alternative splicing, a post-transcriptional mRNA processing mechanism, can generate 

multiple mRNA transcripts, resulting in structurally and functionally modified proteins from a 

single gene. This variability in splicing can lead to malignant phenotypes, and the isoforms 

produced may have functional relationships or differ significantly [19, 20]. In PDAC, alternative 

splicing has been associated with promoting tumor progression and resistance to therapy. 

Notably, isoforms of CD44, a cell-surface glycoprotein, have been implicated in cancer 

metastasis [21]. Additionally, an isoform of the RON tyrosine kinase receptor has been identified 

in pancreatic cancer cell lines [22]. The significant association of alternative splicing events with 

the tumor immune microenvironment has been reported, impacting immune cell infiltrations 

[17]. 

Nevertheless, the identification of differentially expressed immune genes and the analysis of 

immune responses affected in PDAC can provide crucial insights into the mechanisms involved 

in the isoform switching of immune-related genes through alternative splicing of mRNAs. This 

process plays a pivotal role in tumor proliferation and progression, potentially resulting in the 

discovery of novel therapeutic biomarkers for PDAC. Furthermore, differentially expressed 

immune genes may also serve as therapeutic biomarkers, shedding light on the still controversial 

interactions between tumors and immune cells, and offering avenues to overcome the poor 

immune responses associated with the inherent immunogenicity challenges of PDAC. 

Considering the poor immunogenicity, the lack of significantly activated immune systems, 

and the adverse effects of alternate splicing on immune cell infiltration, it is imperative to 

explore the alternate splicing events of immune-related genes. This study is designed to utilize 

RNA sequencing data from PDAC patients and corresponding normal individuals to analyze the 

dysregulated immune response generated against PDAC. The identification of differentially 

expressed genes is followed by the filtration of immune-related genes. Subsequently, the 

investigation extends to the isoforms of immune-related genes generated due to PDAC. 

Consequently, this study aims to pinpoint dysregulated immune response-related biomarkers in 

PDAC that can serve as new therapeutic targets for further studies. 



ALTERNATIVE SPLICING IN PANCREATIC DUCTAL ADENOCARCINOMA LEADS TO DYSREGULATED IMMUNE SYSTEM 

17 

Mathematical Biology and Bioinformatics. 2024. V. 19. № 1. doi: 10.17537/2024.19.15 

METHODOLOGY 

Study overview 

The present study aimed to identify dysregulated immune system genes, with a focus on 

understanding how alternative splicing of these genes may contribute to poor immune response 

in PDAC patients. To achieve this objective, a multi-step approach was employed. Firstly, the 

RNA-seq pipeline was utilized to analyze two datasets consisting of tumors and their adjacent 

normal tissue samples from pancreatic cancer patients. Subsequently, immune system-associated 

genes were extracted from the pool of common dysregulated genes identified in both datasets, 

highlighting genes with shared dysregulation in the immune system. The expression levels of 

these common dysregulated genes were then validated through GEPIA, Expression Atlas, and a 

review of the literature. 

Furthermore, functional enrichment analysis was conducted on the identified common genes 

to gain insights into the biological processes, molecular functions, cellular components, and 

pathways associated with these dysregulated immune genes. Lastly, isoform switching analysis 

was performed specifically on the common upregulated and downregulated immune genes to 

elucidate their biological relevance to PDAC. The study design is illustrated in Figure 1. 

 

 

Fig. 1. Overall workflow of PDAC study. 

 

Collection of data 

The RNA-seq datasets were obtained from the Gene Expression Omnibus (GEO) with the 

following accession numbers: GSE171485 and GSE119794 [23]. GEO serves as an international 

public repository for microarray, high-throughput sequencing, and next-generation sequence 
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functional genomics datasets and is supported by the National Center for Biotechnology 

Information (NCBI) [24]. Specifically, the GSE171485 dataset comprised 6 samples from PDAC 

patients and 6 samples from normal individuals. On the other hand, the GSE119794 dataset 

included (9 samples from pancreatic cancer patients, consisting of 5 tumor samples and 4 normal 

samples). Both datasets were sequenced using the Illumina HiSeq 2000 platform. 

RNA-seq preprocessing, mapping, and post-processing 

Raw reads obtained from the sequencer often contain contaminants such as poor-quality 

reads, adapters, and primer contents. To address this issue, raw reads underwent preprocessing 

before alignment. The FastQC tool was utilized to assess the quality of raw reads, considering 

parameters such as per-base sequence quality, GC content, per-base N content, sequence length 

distribution, sequence duplication levels, overrepresented sequences, and adapter content [25]. 

Poor-quality reads were then trimmed using the FastP tool, with parameters like -i for raw 

FASTQ sample, -o for output, and -w for multi-core processing. This step aimed to eliminate 

PCR artifacts and low-quality reads, ensuring the generation of high-quality data for downstream 

analysis [26]. 

Following trimming, the quality of the cleaned reads underwent reassessment using the 

FastQC tool. Subsequently, the cleaned reads were aligned against the reference human genome 

(GRCh38) using the Hisat2 aligner. To avoid false estimation of gene expression, duplicates, 

also known as PCR artifacts, were identified and removed from mapped reads using a 

Sambamba command-line module named markdup, with the -r flag employed in the process 

[27]. 

Read quantification and DEA analysis 

Abundances of gene expression were estimated using the StringTie tool [28]. StringTie 

performed a three-step process to generate count reads: initially, it assembled alignments into 

partial and full-length transcripts, creating multiple isoforms containing millions of short read 

sequences. Subsequently, transcripts were merged to establish a consistent set across all samples, 

and gene quantification was carried out using the merged transcripts as a reference. The -eB 

option was employed to generate expression counts in the Ballgown table format. 

Differentially expressed genes (DEGs) between pancreatic cancer patients and normal 

individuals were analyzed using the Ballgown 2.30.0 package in R 4.2.2. Biologically and 

statistically significant genes between PDAC and normal samples were identified based on reads 

per kilobase of exon per million reads mapped (FPKM) normalized expression, analyzed by 

Ballgown using logFC values and p-values, respectively. A threshold of P-value < 0.05 and 

|LogFC| > 1 was applied to define upregulated and downregulated genes. Additionally, 

significant DEGs were visually represented through a Volcano plot. 

Identification of common dysregulated genes  

Common significant dysregulated genes between the two datasets were identified using 

Venny 2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/) and the number of common upregulated 

and downregulated genes were illustrated as Venn diagrams. 

Validation of common dysregulated genes 

The dysregulated expression of significant upregulated and downregulated genes common 

between the two datasets was further validated through Gene Expression Profiling Interactive 

Analysis (GEPIA2), Expression Atlas, and a literature review [29, 30]. GEPIA2 serves as a 

valuable resource for gene expression analysis, leveraging tumor and normal samples from The 

Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. The 

Expression Atlas database, supported by the European Bioinformatics Institute (EBI), provides 

insights into gene expression patterns using data from RNA-seq and microarray studies, as well 

as protein expression from proteomics studies. 

https://bioinfogp.cnb.csic.es/tools/venny/
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Functional enrichment analysis 

Functional enrichment analysis, encompassing GO term analysis and KEGG pathway 

analysis of the common dysregulated genes, was conducted using the enrichR 3.1 package in R 

4.2.2 [31]. Upregulated and downregulated genes were analyzed separately. The plotEnrich() 

function was employed to generate bar plots depicting GO terms (biological process, molecular 

function, and cellular component) and KEGG pathways. Notably, enrichment terms were sorted 

based on the least p-value. 

Prediction of immune-system-related marker genes 

Immune marker genes were identified by comparing against the ScType gene marker 

database [32]. ScType is a fully automated database that relies on cell type identification of 

single-cell RNA-seq profiles, utilizing a comprehensive cell marker database based on 

experimentally validated expression signatures as background information. Hence, the Cell 

Marker Database of ScType was utilized to filter out immune system-related genes. 

Subsequently, GO molecular function (MF) analysis of the shortlisted dysregulated immune 

genes was conducted using GeneCodis 4 [33]. 

Isoform switching analysis 

Transcript-level expression profiles between PDAC and normal individuals were identified 

through isoform switching analysis using the IsoformSwitchAnalyzeR package (v1.16.0) in R 

4.2.2 [34]. Quantification files and merged annotations obtained through StringTie were inputted 

into IsoformSwitchAnalyzeR, along with transcript files and a design file containing sample IDs 

and their corresponding conditions. The IsoformSwitchTestDEXSeq() function was applied to 

predict Differential Isoform Usage (DIU) based on a differential isoform (dIF) cutoff of 0.1 and 

a gene ExpressionCutoff of 0.5, providing relative abundances of all isoforms of a gene between 

PDAC and normal samples. 

The longest Open Reading Frames (ORFs) were shortlisted using the analyzeORF function 

with the longest orfMethod. Subsequently, shortlisted ORF sequences were extracted through 

extractSequence , generating two files containing nucleotide and protein sequences. Functional 

consequences for ORFs, including coding potential, signal peptides, protein domains, and 

intrinsically disordered regions (IDRs), were identified through CPC2, SignalP, Pfam, and 

IUPred3, respectively. Functions such as analyzeCPC2, analyzeSignalP, analyzePFAM, and 

analyzeIUPred2A were utilized to assign functional consequences to the transcripts. Finally, the 

switchPlot function was employed to plot dysregulated immune gene isoforms in PDAC [35]. 

Prediction of immune response in PDAC 

Immune cell infiltration and immune response are identified in the tumor microenvironment 

to bring about effective treatment against cancer [36]. To elucidate the immune response, a 

deconvolution method was employed using the deconvolute function of the immunedeconv 2.1.0 

package in R 4.2.2 [37]. Two deconvolution methods majorly, quanTIseq and MCPcounter, were 

utilized to get the immune cell type fraction in the form of scores for all the samples and to 

compare scores between samples across each cell type individually, respectively [35, 38].  

RESULTS 

Identification of dysregulated genes 

Expression profiling of 12 pancreatic samples (n = 6 tumor; n = 6 normal) under accession 

ID: GSE171485 revealed a total of 484 dysregulated genes (both upregulated and 

downregulated) in PDAC patients. Among these, 351 genes were overexpressed with a fold 

change value > 1 and a P-value < 0.05, while 133 genes were underexpressed, exhibiting an FC 

value < –1 and P-value < 0.05 in PDAC. The biologically and statistically significant 

dysregulated genes are illustrated in Figure 2. Additionally, the top 10 upregulated and 

https://www.zotero.org/google-docs/?LOwyMT
https://www.zotero.org/google-docs/?Cyigdc
https://www.zotero.org/google-docs/?qnZFIT
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downregulated genes, with respect to logFC values, are presented in Table 1 and Table 2, 

respectively. The top 10 significant upregulated genes included MSLN, MUCL3, TFF1, 

COL17A1, GJB3, KLK7, TRIM29, FAM83A, FAM25BP, and S100A14, whereas the top 10 

downregulated genes comprised RPL21P7, RERGL, RPL19P16, VIT, NUDT7, CCN5, 

ATP1A2, CNTFR, DPT, and IQCH-AS1. 

 

 
       A 

 
B 

Fig. 2. Volcano plots from RNA-seq analysis depict differentially expressed genes in two PDAC datasets: 

(A) Enhanced Volcano plot illustrates differentially expressed genes in PDAC dataset GSE119794. 

Biologically significant genes are positioned on the x-axis based on Log2FC (cutoff: +1), while the y-axis 

represents statistically significant genes in terms of Log10P value (cutoff < 0.05). Upregulated and 

downregulated genes are highlighted in red dots. (B) Enhanced Volcano plot portrays differentially expressed 

genes in PDAC dataset GSE171485. Biologically significant genes are displayed on the x-axis according to 

Log2FC (cutoff: + 1), while the y-axis denotes statistically significant genes based on Log10P value (cutoff 

< 0.05). Upregulated and downregulated genes are indicated by red dots. 
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Furthermore, transcriptomic data analysis of GSE119794, consisting of 10 samples (5 tumors 

vs. 4 adjacent normals), revealed 517 significantly dysregulated genes. Among these, 249 genes 

were upregulated, and 268 genes were identified as down-regulating genes, exhibiting a P-value 

< 0.05 and an FC value > 1 and < –1, respectively. The top 10 significantly upregulated genes 

included CEACAM5, CXCL5, SFTA2, LGALS4, CXCL17, MSLN, CTSE, KRT16, MMP11, 

and PPP1R14D. Conversely, PI16, SCARA5, IAPP, ADIPOQ, PLIN1, CHRDL1, IGF2, PLIN4, 

NGFR, and SCGN were identified as the top 10 downregulated genes. Based on logFC values, 

the top 10 upregulated and downregulated genes are provided in Tables 3 and 4, respectively. 

 
Table 1. Top 10 upregulated genes in GSE171485 PDAC dataset  

Genes P-value logFC 

MSLN 4.55E-06 4.636672538 

MUCL3 0.01132635057 3.976494007 

TFF1 0.009963133761 3.813063842 

COL17A1 0.0004668704807 3.364852262 

GJB3 1.51E-05 3.303960298 

KLK7 0.003939324055 3.294303935 

TRIM29 7.49E-05 3.161054181 

FAM83A 0.002588314191 3.143589797 

FAM25BP 0.0005366872457 3.100267093 

S100A14 0.001584255445 3.066562691 

 

 
Table 2. Top 10 downregulated genes in GSE171485 PDAC dataset 

Genes P-value logFC 

RPL21P7 0.02315281016 -3.679508156 

RERGL 0.01005568213 -2.945557326 

RPL19P16 0.03573510581 -2.826809393 

VIT 0.00652578366 -2.090649145 

NUDT7 0.004555453509 -2.057172134 

CCN5 0.02510264813 -2.056499259 

ATP1A2 0.01517218736 -2.046368623 

CNTFR 0.03767746566 -2.02774496 

DPT 0.04936993338 -2.007077992 

IQCH-AS1 0.01795491618 -1.957618248 
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Table 3. Top 10 upregulated genes in GSE119794 PDAC dataset  

Gene P-value logFC 

CEACAM5 0.03 4.26 

CXCL5 0.01 3.77 

SFTA2 0.01 3.43 

LGALS4 0.01 3.36 

CXCL17 0.04 3.31 

MSLN 0.01 3.16 

CTSE 0.02 2.93 

KRT16 0.05 2.92 

MMP11 0.04 2.9 

PPP1R14D 0 2.86 

 
Table 4. Top 10 downregulated genes in GSE119794 PDAC dataset  

Gene P-value logFC 

PI16 0 -4.21 

SCARA5 0 -3.72 

IAPP 0.02 -3.61 

ADIPOQ 0.03 -3.18 

PLIN1 0.01 -3.14 

CHRDL1 0.02 -3.07 

IGF2 0.01 -2.93 

PLIN4 0 -2.92 

NGFR 0.01 -2.89 

SCGN 0.02 -2.8 

 

Identification of common genes among the datasets 

Using Venn 2.1.0, common upregulated and downregulated genes between the two datasets 

were identified. Among the upregulated genes, 94 were found to be commonly present in both 

datasets, while 28 common downregulated genes were identified. Venn diagrams illustrating the 

common upregulated and downregulated genes between the two datasets are presented in 

Figure 3,A and 3,B, respectively. 
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                                                A                                                                                 B 

Fig. 3: Venn diagrams showing the number of common dysregulated genes: (A) – common upregulated 

genes, (B) – common downregulated genes. 

 

Validation of expression levels of common immune genes using GEPIA and 

ExpressionATLAS  

The expression levels of genes that were identified as common between both datasets 

(GSE171485 and GSE119794) were validated through GEPIA, Expression Atlas, and literature 

review. However, the expression data for common upregulated genes, MUCL3 and INAVA, was 

not available on GEPIA, and therefore, their validation was conducted using Expression Atlas. 

Additionally, the expression data for two upregulated genes, PLPP2 and PKD1-AS1, were not 

found in either of the databases, so their expressions were further verified through a literature 

review. 

GO and pathway enrichment of common genes 

The GO terms analysis associated with the dysregulated common genes among both datasets 

(GSE171485 and GSE119794) was conducted using enrichR. Biological processes (BP), 

molecular functions (MF), and cellular components (CC) GO terms were elucidated for the 

dysregulated genes. The upregulated genes in the datasets were found to be enriched in BP, such 

as epidermis development, skin development, keratinocyte differentiation, establishment of skin 

barrier, skin epidermis development, cell morphogenesis involved in differentiation, epidermal 

cell differentiation, epithelial cell morphogenesis, epithelial cell development, and tight junction 

assembly (Supplementary Material, Figure S1). On the other hand, the downregulated genes 

showed dysregulated BP, such as neuron projection extension, heart development, blood vessel 

morphogenesis, sulfur compound biosynthetic process, regulation of renal sodium excretion, 

regulation of ventricular cardiac muscle cell membrane depolarization, positive regulation of 

urine volume, AV node cell to bundle of His cell communication, synaptic transmission, and gap 

junction assembly (Figure S2). 

Moreover, the dysregulated molecular functions (MF) associated with the upregulated genes 

included cadherin binding, actin binding, phosphatidylinositol 3-kinase regulatory subunit 

binding, serine-type peptidase activity, myosin V binding, myosin binding, cadherin binding 

involved in cell-cell adhesion, protein tyrosine kinase activity, transmembrane receptor protein 

kinase activity, and cell-cell adhesion mediator activity (Figure S3). However, the 

downregulated genes were involved in the dysregulation of MF, such as iron ion binding, gap 

junction channel activity involved in cell communication by electrical coupling, gap junction 

hemi-channel activity, neurotrophin binding, RAGE receptor binding, death receptor activity, 

DNA nuclease activity, transition metal ion binding, gap junction channel activity, 

oxidoreductase activity; acting on single donors with incorporation of molecular oxygen; 

incorporation of two atoms of oxygen (Figure S4). 

Nonetheless, the cellular component (CC) analysis showed that the upregulated genes were 

mainly localized in tight junction, cell-cell junction, bicellular tight junction, cornified envelope, 
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apical junction complex, Golgi lumen, cortical actin cytoskeleton, platelet dense granule 

membrane, microvillus, and adherens junction (Figure S5). While the downregulated genes were 

mainly located in the Golgi lumen, collagen-containing extracellular matrix, secondary 

lysosome, dense core granule, connexin complex, gap junction, myofibril, intercalated disc, 

Golgi stack, polymeric cytoskeletal fiber (Figure S6). 

KEGG pathway analysis of common dysregulated genes from bulk RNA-seq 

The KEGG pathway analysis was performed using enrichR to indicate the dysregulated 

pathways due to the activity of the dysregulated genes. It revealed that the upregulated genes 

dysregulated pathways such as ECM-receptor interaction, tight junction, galactose metabolism, 

small cell lung cancer, fructose and mannose metabolism, neomycin; kanamycin and gentamicin 

biosynthesis, glycerolipid metabolism, central carbon metabolism in cancer, arrhythmogenic 

right ventricular cardiomyopathy, and insulin secretion (Figure 4). However, the pathways 

affected by the downregulated genes were found to be vitamin B6 metabolism, taurine and 

hypotaurine metabolism, ras signaling pathway, asthma, nicotinate and nicotinamide 

metabolism, tyrosine metabolism, tryptophan metabolism, valine; leucine and isoleucine 

degradation, cysteine and methionine metabolism, and regulation of lipolysis in adipocytes 

(Figure 5). 

 

 
Fig. 4. The bar chart plot of the top 10 upregulated KEGG pathways from the KEGG pathway analysis of 

cancer upregulated genes, using enrichR. The red color indicates more significant pathways. 

 

 

Fig. 5. The bar chart plot of the top 10 downregulated KEGG pathways from the KEGG pathway analysis of 

cancer downregulated genes, using enrichR. The red color indicates more significant pathways. 
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Filtration of immune system genes 

The scType cell marker database was used to identify the genes that are involved in immune 

functions and involved in the regulation of the signaling pathways that play a role in the immune 

response against tumors. The common genes between the DEGs set and scType database were 

selected to identify the isoform switching in these immune system-related genes Table 5. The 

gene names and their functions, along with their fold change values, are represented in Table 6. 

 

Table 5. Immune system-related dysregulated genes 

Expression Number of genes 

Upregulated immune genes 1 

Downregulated immune genes 3 

 

Table 6. Shortlisted dysregulated genes involved in the immune system (P-value < 0.05) of 

GSE171485 and GSE119794 datasets, respectively 

Gene name 

P-value 

(GSE171485 and 

GSE119794 

datasets) 

LogFC 

(GSE171485 

and 

GSE119794 

datasets) 

Function Expression 

CRHBP 0.7238909524 –1.010094809 Corticotropin-releasing 

hormone 

DOWN 

0.342912567279502 –1.19 

FCER1A 0.8250759999 –1.582917688 IgE receptor that initiates 

allergic response 

DOWN 

0.300850725284966 –2.68 

GNG11 0.6132936433 –1.181174619 Encodes lipid-anchored, 

cell membrane protein 

(involved in 

transmembrane signaling) 

DOWN 

0.300850725284966 –1.05 

EPHA2 0.6699704272 1.608122649 Receptor tyrosine kinase 

responsible for 

bidirectional signaling into 

neighbouring cells 

UP 

0.359087028560798 1.3 

 

Isoform switching analysis and GO MF analysis of upregulated genes 

Isoform switching analysis of immune system-related genes revealed significant isoform 

usage for both upregulated (EPHA2) and downregulated (GNG11, CRHBP, and FCER1A) 

genes. For the upregulated gene EPHA2, it was observed that EPHA2 encodes two non-coding 

isoforms. Among them, one isoform (ENST00000358432) showed increased expression in 

normal, while one novel isoform (MSTRG.377.2) exhibited increased usage in cancer 

(Figure 6,a). Additionally, GO analysis of the upregulated immune gene identified dysregulated 

molecular functions (MF), including transmembrane receptor protein kinase activity, 

transmembrane receptor protein tyrosine kinase activity, protein tyrosine kinase activity, and 

cadherin binding (Figure 6,b). 
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a 

 
b 

Fig. 6. Isoform switching analysis showing the genes and isoforms expressions, number of isoforms and 

isoforms usage in cancer and normal cells. It also shows the GO MF analysis of upregulated immune genes. 

Isoform usage of EPHA2 is shown in (a) whereas (b) shows the GO MF analysis. 

 

 

Isoform switching analysis and GO MF analysis of downregulated genes 

The isoform switching analysis of the downregulated immune system-related genes indicated 

that CRHBP contains a single isoform (ENST00000274368) with equal usage in cancer and 

normal (Figure 7,a). It was determined that FCER1A contains 2 isoforms with increased usage of 

only one non-coding isoform (ENST00000693622) in cancer (Figure 7,b). For gene GNG11, a 

single non-coding isoform (ENST00000248564) was observed with equal usage in normal and 

cancer-affected individuals (Figure 7,c). In addition, GO MF analysis revealed that down-

regulated immune genes were primarily enriched in GTPase activity and ribonucleoside 

triphosphate phosphatase activity (Figure 7,d). 
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a 

b 

c 

d 
Fig. 7. Isoform switching analysis showing the genes and isoforms expressions, number of isoforms and isoforms 

usage in cancer and normal cells. It also shows the GO MF analysis of downregulated immune genes. Isoform usage 

of CRHBP is shown in (a), FCER1A in (b) and GNG11 is represented in (c). GO MF analysis is shown in (d). 
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Immunedeconv analysis of pancreatic cancer 

The immune cell contents in PDAC and normal samples were estimated through 

deconvolutional approaches, primarily quanTIseq and MCPcounter methods. Figure 8, utilizing 

the quanTIseq method, illustrates that cancer samples exhibit a high level of B cells, 

Macrophages M1/M2, and Natural Killer (NK) cells. The highest level of Macrophage M1 is 

observed in SRR15539284 (cancer), while NK cells dominate in SRR15539282 (cancer). CD8+ 

T-cells are present in all the cancer samples except SRR14144012, with their highest abundance 

observed in SRR15539282 (cancer) and SRR15539283 (cancer). T cell regulatory (Tregs) are 

significantly present in all cancer samples except for SRR15539284 (cancer), with the highest 

level shown in SRR14144012 (cancer). Samples SRR15539281 (normal) and SRR14144011 

(normal) contain the largest content of uncharacterized cells (showing no signatures) and the 

least amount of Macrophage M2, T cell CD8+, and NK cells. 

Through the MCPcounter method (Figure 9), cancer-associated fibroblasts, cytotoxicity 

scores, T-cells, endothelial cells, macrophage/monocyte, myeloid dendritic cells, and neutrophils 

are observed in considerably high levels in 5 out of the 6 total cancer samples, including 

SRR14144012, SRR14144014, SRR15539284, SRR15539283, and SRR15539282. CD8+ T-

cells are present in very low amounts in SRR14144012 (cancer) and in the largest amount in 

SRR15539282, which is consistent with quanTIseq results. The highest levels of cytotoxicity 

scores, myeloid dendritic cells, T-cells, and CD8+ T-cells are observed in SRR15539282 

(cancer), whereas elevated levels of cancer-associated fibroblasts are found in SRR15539283 

(cancer). B cells also show high levels among all cancer samples except SRR14144013. 

 

 
Fig. 8. The bar chart depicts scores for cell-type fractions using quanTIseq. 
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Fig. 9. The dot plot depicts scores per cell-type fractions using MCPcounter. 

 

DISCUSSION 

Pancreatic cancer stands as a highly lethal disease, marked by an escalating incidence and 

dismal prognosis. The GLOBOCAN 2020 Statistics report reveals 495,773 reported cases and 

466,003 fatalities globally, with a higher prevalence in men [3]. Various pancreatic cancer types, 

including endocrine, ductal, and exocrine, have been identified, with pancreatic ductal carcinoma 

in the exocrine region emerging as the most aggressive, representing 90 % of all cases and 

exhibiting poor prognosis [7, 8]. The aggressiveness of pancreatic ductal carcinoma has been 

linked to immune system dysregulation, characterized by insufficient immune activation and low 

immunogenicity. Additionally, alternative splicing, a post-transcriptional phenomenon, has been 

implicated in adverse effects on immune cell infiltration, contributing to immune system 

dysregulation [19, 20]. Unraveling alternative splicing mechanisms in immune system-related 

dysregulated genes is crucial for understanding the progression and development of PDAC. 

The identified common immune-infiltrating genes (EPHA2, GNG11, CRHBP, and FCER1A) 

in both datasets (GSE171485 and GSE119794) might be involved in the proliferation and poor 

prognosis of PDAC. The upregulated gene EPHA2, a receptor tyrosine kinase, is involved in cell 

proliferation regulation, and cell-cell adhesion. Its frequent overexpression in PDAC has been 

linked to immune evasive characteristics [39–41]. However, the downregulated genes (GNG11, 

CRHBP, and FCER1A) need further investigation. GNG11, involved in the transmembrane 
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signaling system, is a member of the G protein γ family and lacks comprehensive exploration in 

PDAC, warranting further study [42]. CRHBP (corticotrophin-releasing hormone binding protein 

gene) and FCER1A (α-subunit of the high-affinity immunoglobulin E receptor) are also 

underexplored in PDAC, and their potential roles in immune response dysregulation and 

molecular functions necessitate more attention for a better prognosis [43, 44]. 

Moreover, immune infiltration-related genes are crucial for the biological functioning of 

immune infiltration into the tumor microenvironment (TME). Dysregulation in the expression of 

these genes is associated with tumor development and progression [45]. Analyzing the 

expression of immune-related genes in the TME is essential for developing effective 

immunotherapeutic strategies against PDAC. 

The functional enrichment analysis, particularly the Gene Ontology Molecular Function (GO 

MF) analysis, elucidated the dysregulated molecular functions of the upregulated and 

downregulated immune-related genes. The upregulated gene EPHA2 exhibited dysregulated 

molecular functions such as transmembrane receptor protein kinase activity, transmembrane 

receptor protein tyrosine kinase activity, protein tyrosine kinase activity, and cadherin binding. 

These molecular functions, when overexpressed, promote increased cell adhesion, ensure tissue 

integrity, favor collective cell migration, and modulate intracellular signaling. Moreover, they 

exert immunomodulatory effects on immune cells, recruiting them to the tumor 

microenvironment (TME). The upregulation of these molecular functions, resulting from the 

production of non-functional isoforms due to cancer, may lead to immune suppression [46, 47]. 

Conversely, downregulated genes suppressed the molecular functions of tumor cells, 

primarily encompassing GTPase activity and ribonucleoside triphosphate phosphatase activity. 

The downregulation of these molecular functions in cancer induces tumorigenesis through 

increased cell proliferation and differentiation. It also contributes to the dysregulation of immune 

cells such as macrophages, phagocytes, monocytes, natural killer cells, and lymphocytes [48]. 

Hence, the dysregulation of immune infiltration genes suggests an estimation of immune cell 

fractions in the tumor microenvironment. 

The cancer microenvironment plays a crucial role in cancer treatment, particularly 

immunotherapy, providing insights into non-cancerous cells present in the tumor, especially 

immune cells. The analysis from quanTIseq (deconvolution-based) and MCPcounter (Marker-

gene-based) methods demonstrated that almost all immune cell types are abundantly present in 

cancer samples. B cells, macrophages, natural killer cells, cytotoxicity scores, T-cells, 

endothelial cells, monocytes, and neutrophils were found in significant levels in cancer cells. B 

cells and T cells have well-known roles in anti-cancer immunity, with B cells also linked to pro-

tumorigenic potential [49]. Natural killer cells exhibit tumor-antagonizing immune activities, 

promoting anti-tumor responses. However, the presence of macrophages in the tumor 

microenvironment has been associated with immunosuppression and tumor progression [50]. 

Endothelial cells contribute to tumor angiogenesis, act as a major source of cancer-associated 

fibroblasts, and play a role in mediating immune responses in the tumor microenvironment [51]. 

Cancer-associated fibroblasts are known for promoting tumor progression and are considered 

promising targets for the treatment of various cancers [52]. CD8+ T-cells, major drivers of 

immunity against cancer, were observed in large amounts in cancer samples, while T cell 

regulatory (Tregs), associated with both tumor progression and anti-tumor immunity, were also 

present in considerable amounts. Tregs are linked to immune escape mechanisms in tumors [53, 

54]. 

Isoform switching (AS) is a complex and highly regulated process that contributes to 

proteome diversity. In normal cells, isoforms play a crucial role in regulating various biological 

processes; however, their abnormal expression contributes to tumorigenesis [55]. There are five 

major types of alternative splicing events regarding splice site selection, including (exon 

skipping, mutually exclusive exons, intron retention, alternative 5 splice site, and alternative 3 

splice site) [56]. In mammals, intron retention events are more enriched than exon-skipping 

mechanisms. However, in cancer cells, exon skipping events are frequently observed, with a 
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30% higher rate than in normal cells [55]. Isoform switching leads to the loss of DNA sequences 

encoding protein domains, significant changes in amino acid sequences, alteration of protein 

domains, and modification of signal peptides. These changes in domain structure through 

isoform switching can result in dysregulated signal transduction and protein-protein interactions 

[57]. Moreover, the production of noncanonical and cancer-specific mRNA transcripts due to 

aberrant alternative splicing can lead to the loss of function in tumor suppressors or activation of 

oncogenes, contributing to the progression of cancer pathways and malignancies [58]. 

Dysregulation in alternative splicing events is associated with various cellular dysfunctions, 

including tumorigenesis, immunological diseases, and infectious diseases. Isoform switching in 

immune-related genes can dysregulate the immune system, showing adverse effects on immune 

cell infiltration. 

Isoforms with increased usage in PDAC were identified from the upregulated gene EPHA2 

and downregulated genes (GNG11, CRHBP, and FCER1A). For the upregulated gene EPHA2, a 

novel nonsense-mediated decay (NMD) isoform (MSTRG.377.2) was predicted to have 

increased usage in cancer. In the case of downregulated gene FCER1A, the isoform switching 

analysis revealed that a non-coding isoform (ENST00000693622) with intronic retention had 

significant usage in patients. FCER1A, encoding Fc Epsilon Receptor Ia, is a protein-coding 

receptor gene responsible for inducing allergic reactions in response to allergens and secreting 

cytokines [59]. 

While previous studies by Wu et al. [60] and Lin et al. [61] did not specifically focus on 

investigating immune infiltrating genes, emphasizing the exploration of novel dysregulated 

genes in PDAC versus normal tissues as potential therapeutic targets, this study utilized bulk 

RNA datasets to explore particularly novel immune-infiltrating genes as potential therapeutic 

targets for PDAC. 

In conclusion, this study unveiled significantly dysregulated immune biomarkers involved in 

the deregulation of key immunological and normal cellular processes, ultimately contributing to 

PDAC. Four novel immune dysregulated genes (EPHA2, CRHBP, GNG11, and FCER1A) were 

identified as significantly dysregulated in PDAC. Additionally, isoform switching and immune 

response analysis of immune system-related dysregulated genes revealed dysregulation of the 

immune system and immune cell infiltration at the tumor site, potentially contributing to the 

development and progression of PDAC. The study also highlighted that several immune genes 

and their responses are hindered due to the production of multiple non-functional or pathogenic 

isoforms. Further studies on these isoforms and their effects on protein function are proposed. 

These immune biomarkers hold potential significance in therapeutics and the exploration of 

novel diagnostic possibilities. However, robust experimental validation is essential to confirm 

the in silico findings and outcomes of this study. 

CONCLUSIONS 

PDAC is a highly lethal and aggressive malignancy, with a global prevalence rate of 49.8 per 

million and a mortality rate of 57.7 per million. The RNA-seq analysis of two datasets 

(GSE171485 and GSE119794) revealed a total of 484 differentially expressed genes (351 

upregulated and 133 downregulated) in the GSE171485 dataset. In the GSE119794 dataset, a 

total of 517 significantly dysregulated genes were identified, with 249 genes upregulated and 

268 genes downregulated. Specifically, four immune-related genes (EPHA2, CRHBP, GNG11, 

and FCER1A) were identified as novel immune-infiltrating genes not previously reported in 

PDAC, particularly in the context of alternative splicing leading to isoform switching. The 

prediction of immune cell infiltration in pancreatic cancer uncovered dysregulated immune 

responses due to the formation of pathogenic isoforms. Gene Ontology (GO) molecular function 

analysis of differentially expressed common immune genes among both datasets revealed 

dysregulated molecular functions, including protein binding, IgE binding, CXCR chemokine 

receptor binding, ephrin receptor activity, cobalamin binding, and chemokine activity. The 
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downregulation of these functions in cancer suggests induction of tumorigenesis through 

increased cell proliferation and dysregulation of immune cells.The study uncovered the 

potentially significant role of the immune system in the development and progression of PDAC. 

However, the impact of the identified isoform biomarkers on treating PDAC remains unclear 

without future investigations and experimental validations. The study proposes further 

investigations to explore the functional aspects of pathogenic and non-functional isoforms. The 

proposed immune biomarkers are suggested for use in the development of efficient 

immunotherapeutic treatments against PDAC. 
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