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Abstract. This paper delves into the application of fractional calculus, with a

focus on Caputo derivatives, in epidemiological models using ordinary differential

equations. It highlights the critical role Caputo derivatives play in modeling

intricate systems with memory effects and assesses various epidemiological

models, including SIR variants, demonstrating how Caputo derivatives capture

fractional-order dynamics and memory phenomena found in real epidemics. The

study showcases the utility of Laplace transformations for analyzing systems

described by ordinary differential equations (ODEs) with Caputo derivatives. This

approach facilitates both analytical and numerical methods for system analysis and

parameter estimation.Additionally, the paper introduces a tabular representation for

epidemiological models, enabling a visual and analytical exploration of variable

relationships and dynamics. This matrix-based framework permits the application of

linear algebra techniques to assess stability and equilibrium points, yielding valuable

insights into long-term behavior and control strategies. In summary, this research

underscores the significance of Caputo derivatives, Laplace transformations, and

matrix representation in epidemiological modeling. We assume that by using this

type of methodology we can get analytic solutions by hand when considering a

function as constant in certain cases and it will not be necessary to search for

numerical methods.

Key words: Caputo derivatives, Laplace transformation, epidemiology, ODEs, fractional

calculus, matrices.

1. INTRODUCTION

1.1. Historical Background

The origin of the fractional calculus can be traced to the question of the extension of the

concept. A well-known example is the extension of the concept of real numbers to complex

numbers, and another is the extension of the concept of integer factorials to complex factorials.

The question of extending the meaning to generalized integration and differentiation is the

following question: Can the meaning of integral order derivatives dny
dxn be extended to make

sense if n is any number—integer, fractional or complex; The above notation was created by

Leibnitz [1].

Perhaps it was a naive symbol game that made L’Hospital ask Leibnitz about the idea that

n is a fraction. ”What if n is 0.5?” asked L’Hospital. In 1695, Leibnitz said: ”This will lead to a

paradox”. However, he added prophetically, ”From this apparent paradox, useful consequences

will one day be drawn.” In 1697, Leibnitz used the symbol d2y to imply the infinite product of
Wallis for the π

2
and argued that differential calculus could be used to reach the same conclusion.

The first reference to a derivative of arbitrary order is found in an 1819 manuscript. The French

mathematician S. F. Lacroix, wrote a 700-page treatise on differential and integral calculus in
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which he devoted just two pages to the subject of fractional derivatives [2].

Euler and Fourier mentioned arbitrary derivatives but did not provide applications or

illustrations. It was Niels Henrik Abel who made the first application in 1823 [3]. Abel used

fractional calculus to solve an integral equation that arose from the formulation of the question

of equal times. This question, also known as the problem of equal time, involves determining the

shape of a frictionless wire lying in a vertical plane such that a bead placed on the wire slides

to the lowest point of the wire in the same time, regardless of where the bead is placed. The

short-time problem concerns the shortest slip time.

1.2. Definitions of fractional derivatives

D e f i n i t i o n 1. The Caputo fractional derivative of a function f(x) with order α, when

0 < α < 1, is defined as:

CDα
xf(x) =

1

Γ(n− α)

∫ x

a

f (n)(t)

(x− t)α+1−n
dt

Which can be expressed in the following form:

CDα
xf(x) =

1

Γ(n− α)

(∫ x

a

f (n)(t)

(x− t)α+1−n
dt−

n−1∑
k=0

f (k)(a)

Γ(k − α+ 1)
(x− a)k−α+1

)

Where n is the smallest integer greater than or equal toα, f (n)(t) denotes the n-th derivative
of f(t), Γ(·) is the gamma function and α is a positive real constant.

De f i n i t i o n 2. The Riemann-Liouville fractional derivative of a function f(x)with order
α, when 0 < α < 1, is defined as:

RLDα
xf(x) =

1

Γ(n− α)

dn

dxn

∫ x

a

f(t)

(x− t)α+1−n
dt,

Where n is the smallest integer greater than or equal to α, f (n)(t) denotes the nth derivative
of f(t), Γ(·) is the gamma function and α is a positive real constant.

De f i n i t i o n 3. The Grünwald-Letnikov fractional derivative of a function f(x) with

order α, when 0 < α < 1, is defined as:

GLDα
xf(x) = lim

h→0

1

hα

∞∑
k=0

(−1)k
(
α

k

)
f(x− kh)

Where
(
α
k

)
= α(α−1)···(α−k+1)

k!
is the binomial expansion.

De f i n i t i o n 4. The Caputo-Fabrizio fractional derivative of a function f(t) ∈ C1[(a, b)]
with order α, when 0 < α < 1, is defined as:

CFDα
xf(x) =

1

Γ(n− α)

∫ x

a

f (n)(t)Eα,n(x− t)n−α−1dt,

Where n is the smallest integer greater than or equal to α, f (n)(t) denotes the nth derivative
of f(t), Γ(·) is the gamma function, Eα,n(x) is the Mittag-Leffler function and α is a positive

real constant.
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De f i n i t i o n 5. The Riesz fractional derivative of a function f(t) defined in the interval

(a, b) with α > 0, with order α is defined as:

RDα
xf(t) =

1

Γ(α)

(
d

dt

)∫ t

a

f ′(τ)

(t− τ)1−α
dτ

Where Γ(·) is the gamma function, f ′(τ) denotes the first derivative of f(τ) on τ and α is a

positive real constant.

1.3. Definitions of fractional integrals

D e f i n i t i o n 6. The Riemann-Liouville fractional integral with orderα > 0 for a function
f(t) set in the interval (a, b) is defined as:

RLIαf(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ

Where Γ(·) is the gamma function and α is a positive real constant.

De f i n i t i o n 7. The Caputo fractional integral with order α > 0 for a function f(t) set
in the interval (a, b) is defined as:

CIαf(t) =
1

Γ(n− α)

∫ t

a

(t− τ)n−α−1f (n)(τ)dτ

Where Γ(·) is the gamma function and α is a positive real constant.

De f i n i t i o n 8. The Grünwald-Letnikov fractional integral with order α > 0 for a

function f(t) set in the interval (a, b) is defined as:

GLIαf(t) = lim
h→0+

hα

∞∑
k=0

(
α

k

)
(−1)kf(t− kh)

Where
(
α
k

)
= α(α−1)···(α−k+1)

k!
is the binomial expansion, k positive integer and α is a positive

real constant.

De f i n i t i o n 9. The Marchaud fractional integral with order α > 0 for a function f(t)
set in the interval (a, b) defined as:

MIαf(t) =
1

Γ(1− α)

(
d

dt

)∫ t

a

(t− τ)−αf(τ)dτ

Where Γ(·) is the gamma function and α is a positive real constant.

De f i n i t i o n 10. The Hadamard fractional integral with order α > 0 for a function f(t)
set in the interval (a, b) defined as:

HIαf(t) =
1

Γ(α)

∫ t

a

f(τ)

(t− τ)1−α
dτ

Where Γ(·) is the gamma function and α is a positive real constant.
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2. CAPUTO FRACTIONALDERIVATIVESAND EPIDEMIOLOGICALMODELS

2.1. Historical background

The Caputo derivative is a mathematical concept that finds its roots in fractional calculus,

a branch of mathematics that deals with generalizations of ordinary derivatives and integrals

to non-integer orders. The derivative Caputo, named after the Italian mathematician Michele

Caputo, is one of the widely used fractional derivatives because of its favorable properties

and its applications in various fields. Michele Caputo, born in Italy in 1927, is a distinguished

mathematician who has made significant contributions to the field of fractional calculus. He

was educated at the University of Ferrara, where he obtained a degree in mathematics in 1950,

a degree in Physics from the University of Bologna in 1955 and a degree in free teaching

(libera docenza) in Geodesy from the Italian Ministry of Education in 1959. Caputo’s interest

in fractional calculus arose during his studies and research on the theory of elasticity. In 1967,

Caputo published a fundamental paper [4]. This work introduced what is now known as the

fractional derivative Caputo, which generalizes the notion of differentiation to fractional classes.

Caputo himself was also involved in other sciences such as seismology, geology and

geophysics. The work of Michele Caputo in fractional calculus, in particular the development

of the derivative Caputo, had a major impact on the field and paved the way for further

developments in the theory of fractional calculus and its applications. His contribution has been

recognized and appreciated by the scientific community and he continues to be considered a

leading figure in the field of fractional calculus. Today, the derivative Caputo remains a key tool

in the study of fractional calculus and continues to contribute to the understanding of complex

phenomena in various scientific disciplines. The historical background and pioneering work of

Michele Caputo played a key role in shaping the field of fractional calculus and its applications,

leaving a lasting legacy for future generations of mathematicians and scientists.

2.2. Why we used Caputo derivatives. Real life applications

The Caputo derivative has found wide applications in various scientific and engineering

disciplines, such as physics, engineering, signal processing and finance. Its ability to describe

the behaviour of complex systems with memory and non-locality has made it a valuable tool

for modelling and analysis of dynamic processes. Very important similar research has been

conducted on applying Caputo derivatives in epidemiological models and finding the asymptotic

solutions of the ODEs (see [5]).

The use of Caputo derivatives can help to transform a system of equations and conditions into

a simpler system in order to determine the behaviour of a function (convergence, divergence,

stability). Such work has been done on the topics of magnetic materials and their behaviour

and thermodynamic models (see [6]), epidemiology and ODE models (ordinary differential

equations) (see [7]), the transmission of Covid-19(see [8], [9]) and solutions of FDE (functional

differential equations) systems with real-life applications(see [10]).

2.3. Epidemiological models of ordinary differential equations

There are three main types of deterministic models for infectious diseases that are

spread by direct person-to-person contact in a population. Here these simpler models are

formulated as initial value problems for systems of ordinary differential equations and analysed

mathematically. Theorems on the asymptotic stability regions for the equilibrium points are

formulated and phase plane portraits of the solution paths are presented. Parameters are

estimated for various diseases and used to compare the levels of inoculation required to make

the herd immune to these diseases. Although the three models presented are simple and their
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mathematical analyses are elementary, these models provide notation, concepts, intuition and

a foundation for considering more sophisticated models. Some potential improvements involve

disease-related factors such as infectious agent, mode of transmission, latency, infectious period,

susceptibility and resistance, but also social, cultural, ecology providing a sound intuitive

understanding and complete evidence for the three most basic epidemiological models for

microparasitic infections. The study of disease occurrence is called epidemiology. An epidemic

is an unusually large, short-term outbreak of a disease. A disease is called endemic if it persists

in a population. The spread of an infectious disease includes not only disease-related factors

such as infectious agent, mode of transmission, latency, infectious period, susceptibility and

resistance, but also social, cultural, demographic, economic and geographical factors. The three

models considered here are the simplest prototypes of three different types of epidemiological

models [11].

Compartmental models are a very general modelling technique. They are often applied to

the mathematical modelling of infectious diseases. The population is divided into compartments

with labels - for example, S, I or R, (Susceptible, Infected and Removed), where S is the

number of susceptible individuals, i.e. when a susceptible and an infectious individual come

into ’infectious contact’, the susceptible individual is infected with the disease and is moved to

the infectious compartment, I is the number of infectious individuals, i.e. the number of infected

individuals capable of infecting susceptible individuals, and R for the number of distant (and

immunised) or deceased individuals, i.e. the number of infected individuals who have either

recovered from the disease and entered the distant compartment or died (also called ’recovered’

or ’resistant’ in the international literature). People can move between apartments. The order of

the labels usually indicates the flow patterns between compartments; for example, SEIS means

susceptible, exposed, infectious, and then susceptible again.

The beginnings of these models can be traced back to the early 20th century, with important

work by Ross [12], [13], Ross and Hudson [14], Kermack [15] and Kendall [16]. The Reed-Frost

model was also an important and widely misunderstood ancestor of modern epidemiological

modeling approaches [17].

Models are most often run with ordinary differential equations (which are deterministic),

but they can also be used in a stochastic (random) framework, which is more realistic but much

more complex to analyze. Models try to predict things like the way a disease spreads or the total

number of infected people or the duration of an epidemic and estimate various epidemiological

parameters such as the reproductive number. Such models can show how different public

health interventions can affect the outcome of an epidemic, e.g. what is the most effective

technique for issuing a limited number of vaccines to a given population. Researchers have

applied the Laplace-Adomian decomposition method in Caputo-Fabrizio fractional derivatives

for childhood diseases that follow the same mathematical procedure that is done in this article

(see [18]). Our contribution is that this procedure can be expressed using matrices and this could

pave the way to an analytic solution.

The first differential equation model we will report is the SIR. The SIR model is one of

the simplest compartmental models and many models are derivatives of this basic form. The

model consists of three compartments. This model is quite predictive for infectious diseases that

are transmitted from human to human and where recovery confers durable resistance, such as

measles, mumps and rubella. These variables (S, I and R) represent the number of people in

each compartment at a given time. To represent that the number of susceptible, infectious and

remote individuals may change over time (even if the total population size remains constant),

we make the exact numbers a function of t (time): S(t), I(t) and R(t). For a given disease in

a given population, these functions can be processed to predict potential epidemics and bring

them under control.
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As implied by the variable function of t, the model is dynamic in that the numbers in each
compartment can fluctuate over time. The importance of this dynamic aspect is most obvious

in an endemic disease with a short infectious period, such as measles in the UK before the

introduction of a vaccine in 1968. Such diseases tend to occur in epidemic cycles due to the

variation in the number of susceptible individuals (S(t)) over time. During an outbreak, the

number of susceptible individuals decreases rapidly as more of them become infected and thus

enter the infected and remote compartment. Each member of the population typically evolves

from susceptible to infectious to recovered. This can be represented as a flowchart in which

the boxes represent the different compartments and the arrows represent the transition between

compartments.

The system of differential equations expressing the SIR model was first introduced by

WilliamOgilvyKermack andAndersonGrayMcKendrick in 1927 [15] and is written as follows.
dS
dt

= −βIS
N

,
dI
dt

= βIS
N

− γI,
dR
dt

= γI

(1)

Where S(t)+I(t)+R(t) = N , whenN the total stable population and β,γ fixed for the degree

of infection and recovery respectively. From the form of the system in the form of the equation.

dS

dt
+

dI

dt
+

dR

dt
= 0

A more specific form of the SIR model for vital dynamics and stable population is more

commonly used to interpret modern infectious diseases. The resulting system is
dS
dt

= Λ− µS − βIS
N

,
dI
dt

= βIS
N

− γI − µI,
dR
dt

= γI − µR

(2)

Where the constant Λ is the birth rate and µ the death rate. The basic reproduction rate is given

by the relationshipR0 =
β

µ+γ
.Also, the DFE (disease-free equilibrium) of the system forR0 ≤ 1

is

(S(t), I(t), R(t)) = (
Λ

µ
, 0, 0)

The next model we will report is the so-called SEIR, E those who have been exposed to

the virus (exposed). For many major infections, there is a significant latency period during

which individuals are infected but not yet infectious (E). Similar work, but onAtangana-Baleanu

fractional derivatives has been done for the SEIR model for Covid-19, which shows that

fractional calculus might even describe new upcoming diseases and pandemics [19]. The

resulting SEIR system is as follows.
dS
dt

= µN − µS − βIS
N

,
dE
dt

= βIS
N

− (µ+ α)E
dI
dt

= αE − (γ+ µ)I,
dR
dt

= γI − µR

(3)

Where the delay period is a random variable with an exponential distribution with parameter α

(i.e. the average delay period is α−1), and also with a birth rate Λ equal to the rate of death Nµ
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(so that the total number N of the population is constant). Under these conditions we have the

equation

S + E + I +R = N

with a base playback rate of R0 = α
µ+α

β
µ+γ

and the equilibrium point (DFE) of the system for

R0 ≤ 1 is
(S(t), I(t), E(t), R(t)) = (N, 0, 0, 0)

The next model is a variant of the SEIR model, where there is no immunity. In this model an

infection leaves no immunity, so recovered individuals return to the susceptible environment,

moving back into the S(t) compartment. The following differential equations, with the same

parameters as before and the constant ε, describe this model with the following system
dS
dt

= Λ− µS − βIS
N

+ γI,
dE
dt

= βIS
N

− (ε+ µ)E
dI
dt

= εE − (γ+ µ)I,

(4)

The next model we will refer to is called MSIR. For many infections, including measles,

babies are not born in the susceptible part but are immune to the disease in the first few months

of life due to protection by the mother’s antibodies (passed through the placenta and additionally

through colostrum). This is called passive immunity. This additional detail can be illustrated

by including a class M (for maternal immunity) at the beginning of the classical SIR model.

Consequently, the partition M(t) is added to the strictly mathematical system, as well as the

parameter δ. 
dM
dt

= Λ− δM − µM,
dS
dt

= δM − βIS
N

− µS,
dI
dt

= βIS
N

− γI − µI,
dR
dt

= γI − µR

(5)

The next model is called MSEIR and is a combination of the SEIR model and the passive

immunity M. The parameters used in the ODE system are the same as in the models mentioned

above. 

dM
dt

= Λ− δM − µM,
dS
dt

= δM − βIS
N

− µS,
dE
dt

= βIS
N

− (ε+ µ)E
dI
dt

= βIS
N

− γI − µI,
dR
dt

= γI − µR

(6)

The last model we will mention is the Double SI model. This model applies to diseases

transmitted from insect to human, but also from insects to insects (usually mosquitoes). For

this we have two types of compartments S,I , but for two different classes (mosquitoes and

humans), namely Sh, Ih for humans and Sm, Im for mosquitoes. The system consists of four

SDEs and the parameters change for the two categories. The parameters Λh, β1, β2, k1, Λm,

µ and k2 represent the birth rate for susceptible humans, the transmission rate, the death rate,

the birth rate for mosquitoes, the mosquito-to-human transmission rate and the mosquito death

rate, respectively. An example of this model which we will quote is for Zika virus transmission

(see [7]). Depending on the virus, appropriate changes are made to the variables, but the general
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model is obvious. 
dSh

dt
= Λh − β1ShIh − β2ShIm − k1Sh,

dIh
dt

= β1ShIh + β2ShIm − k1Ih,
dSm

dt
= Λm − µSmIh − k2Sm,

dIm
dt

= µSmIh − k2Im

(7)

As it is expected, each virus, depending on its nature, can be approximated by one or more

epidemiological models (there are, however, cases where none of them gives direct results, in

contrast to the application of such models to analytical equations aiming at finding numerical

solutions and behaviours of viruses [20]. Using these ODE systems, researchers can gain insights

into transmission rates, disease severity and the impact of different control strategies, ultimately

helping to develop effective public health interventions for different types of viruses.

2.4. Epidemiological model transformation with fractional derivatives

In this section we will see how some of the models we saw in the section 2.3 in fractional

derivatives Caputo. With the help of the definition 1 of the fractional derivatives Caputo the

following transformations were obtained. The SIR model with the system (2) is transformed as

follows. 
CDα

t S(t) = Λ− µS − βIS
N

,
CDα

t I(t) = βIS
N

− γI − µI,
CDα

t R(t) = γI(t)− µR(t)

(8)

In this representation, CDα
t denotes the Caputo fractional derivative with respect to time t.

The parametersΛ, µ,β and γ represent the birth rate, the natural death rate, the transmission rate

and the recovery rate, respectively (as in all the models we have seen). The integration condition

as to τ takes into account the memory effect in the Caputo fractional derivatives, capturing the

effect of previous values of I(τ) and S(τ) in the current state of the system.
We then transform the SEIR model and the (3) in Caputo derivatives. The parameters are

known from above. The system is written as follows.
CDα

t S(t) = µN − µS − βIS
N

,
CDα

t E(t) = βIS
N

− (µ+ α)E,
CDα

t I(t) = αE − (γ+ µ)I,
CDα

t R(t) = γI(t)− µR(t)

(9)

The SEI model, a simpler variant of the SEIR model, (i.e., the system (4)) is transformed as

follows. 
CDα

t S(t) = Λ− µS − βIS
N

+ γI,
CDα

t E(t) = βIS
N

− (ε+ µ)E,
CDα

t I(t) = εE(t)− (γ+ µ)I(t)

(10)

The transformation of a variant of the classical SIR model with added passive immunity

compartment (model MSIR), i.e. the system(5) is written as follows.
CDα

t M(t) = Λ− δM(t)− µM(t),
CDα

t S(t) = δM − βIS
N

− µS,
CDα

t I(t) = βIS
N

− γI − µI,
CDα

t R(t) = γI(t)− µR(t)

(11)
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Similarly to before, we will transform the model MSEIR, i.e. (6) (with the same parameters)

and the following will result.

CDα
t M(t) = Λ− δM(t)− µM(t),

CDα
t S(t) = δM − βIS

N
− µS,

CDα
t E(t) = βIS

N
− (ε+ µ)E

CDα
t I(t) = βIS

N
− γI − µI,

CDα
t R(t) = γI(t)− µR(t)

(12)

The last model we will transform is the Double SI, which in this case is the system we have

chosen (system (7)). This model will be of use in the following paragraphs, and possibly in some

future research. Therefore, the Caputo fractional derivative system will be done as follows.
CDα

t Sh(t) = Λh − β1Sh(t)Ih(t)− β2Sh(t)Im(t)− k1Sh(t),
CDα

t Ih(t) = β1Sh(t)Ih(t) + β2Sh(t)Im(t)− k1Ih(t),
CDα

t Sm(t) = Λm − µSm(t)Ih(t)− k2Sm(t),
CDα

t Im(t) = µSm(t)Ih(t)− k2Im(t)

(13)

3. LAPLACE TRANSFORMATIONAND CAPUTO DERIVATIVES

3.1. Definition of the Laplace transformation

The definition of the classical Laplace transformation for appropriate functions is given by

the following rigorous definition.

De f i n i t i o n 11. Suppose it is either a continuous function f (or more realistically) a

continuous function by parts. The transformation is done as follows.

L[f(t)] =
∫ ∞

0

e−stf(t) dt = F (s)

Notice that this integral, defined for t from 0 to infinity, becomes a new equation of F (s), i.e.,
our algebraic equation and s = σi+ ω is a complex frequency parameter, with σ, ω ∈ R.

When the term ”the Laplace transform” is used without qualification, it usually means the

one-sided or one-sided transformation. The Laplace transformation can alternatively be defined

as the two-sided Laplace transformation or two-sided Laplace transform, extending the limits of

integration to the entire real axis. If this is done, the common unilateral transformation becomes

just a special case of the bilateral transformation, where the definition of the transformed

function is multiplied by the Heaviside step function.

There is also a definition for the bilateral Laplace transformationwhere the integral is defined

over the whole interval (−∞,+∞) and is written as follows.

De f i n i t i o n 12. Suppose it is either a continuous function f (or more realistically) a

continuous function by parts. The bipartite transformation is done as follows.

L[f(t)] =
∫ +∞

−∞
e−stf(t) dt = F (s)

Notice that this integral, defined for t from 0 to infinity, becomes a new equation of F (s), i.e.,
our algebraic equation and s = σi+ ω is a complex frequency parameter, with σ, ω ∈ R.
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Another notation for the bilateral Laplace transformation is B(f) instead of F .

Two integrable functions have the same Laplace transformation only if they differ in a set

with Lebesgue measure zero. This means that, in the domain of the transformation, there is an

inverse transformation. In fact, except for integrable functions, the Laplace transformation is a

one-to-one mapping from one functional space to another and to many other functional spaces,

although there is usually no easy characterization of the range.

Typical function spaces where this applies include the spaces of blocked continuous

functions, the space of L∞(0,∞), or more generally the moderate distributions in (0,∞). The
Laplace transformation is also definite and injective for suitable spaces of modest distributions.

In these cases, the image of the Laplace transformation lives in a space of analytic functions in

the convergence region.The inverse Laplace transformation is given by the following complex

integral, which is known by various names (the Bromwich integral, the Fourier integral-Mellin

and the inverse formula Mellin). To date, the inverse Laplace transformation is the most difficult

process to understand when solving differential equations with this method [21].

De f i n i t i o n 13. The inverse Laplace transformation of a function F (s) is expressed as

follows.

L−1{F (s)} = f(t) =
1

2πi
lim
T→∞

∫ c+iT

c−iT

estF (s) ds

where c is a constant for which all singularities of F (s) fall on the left-hand side of the line
<(s) = c.

The Laplace transformation is one of the most useful methods for solving differential

equations [22], as discussed below for fractional derivatives. The following definition by [23],

[7] of Caputo derivatives is explored.An extended form of the Laplace transform, directly related

to the fractional derivatives, is also presented, knowing that there is an interaction of these two

[24].

De f i n i t i o n 14. The Laplace transformation of Caputo fractional derivatives of order α

is given by the relation

L[CDα
t f(t)](s) = sαLf(t)−

n−1∑
i=1

sα−i−1f (i)(0)

where n− 1 < α ≤ n ∈ N. Then, the relationship can be developed in the form of

L[CDα
t f(t)] =

snL[f(t)]− sn−1f(0)− sn−1f ′(0)− · · · − f (n−1)

sn−α

The above definition and expansion are derived from thewell-knownLaplace transformation

for the n-order derivative, with n ∈ Z. Except that in the case where the order of the Caputo

derivative isα ∈ (0, 1) the computation of the Laplace transformation remains an open question,
which has not been extensively addressed by the scientific community, unlike the Laplace

transformation of integer-order derivatives.

3.2. Transformation of the model

In this section, we will study the Laplace transforms of the aforementioned systems. In all

systems the function fn(0)n = 1, 2, ... is zero. So the formula of Laplace transformation for the

70

Mathematical Biology and Bioinformatics. 2024. V. 19. № 1. doi: 10.17537/2024.19.61



Caputo Derivatives in Epidemiology

systems we have is as follows.

L[CDα
t fi(t)] =

snL[fi(t)]− sn−1fi(0)

sn−α
(14)

That is, for n = 1 the formula becomes

L[CDα
t fi(t)] =

sL[fi(t)]− fi(0)

s1−α
= sαL[fi(t)]− sα−1fi(0) (15)

Where we will solve based on our definition ofL for the known functions we have, derived from

the Laplace transformation matrix. Also, the notation (̂) is used for the Laplace transformation

of known functions (S(t), I(t), R(t),M(t), Sh(t), Sm(t), Ih(t), Im(t)). More detailed for our

models are transformed below.

First, we apply the definition 15 for the system (8), of the SIR model and the following

system is obtained, respectively for the given equations.
sαŜ(s)− sα−1S(0) = Λ

s
− µŜ(s)− β

N
SI

sαÎ(s)− sα−1I(0) = β
N
SI − (γ+ µ)Î(s)

sαR̂(s)− sα−1R(0) = γÎ(s)− µR̂(s)

(16)

Where, for the sake of uniformity of the complex notation of the equations obtained after

the transformation, we have denoted the following integral. When z ∈ C.

SI =
1

2πi
lim
T→∞

∫ Re(z)+iT

Re(z)−iT

Ŝ(z)Î(s− z)dz (17)

We then find by applying the definition 15 for the system (9), for the SEIR model and the

following system is obtained, respectively for the given equations.
sαŜ(s)− sα−1S(0) = µN

s
− µŜ(s) + β

N
SI

sαÊ(s)− sα−1E(0) = β
N
SI − (µ+ α)Ê(s)

sαÎ(s)− sα−1I(0) = αÊ(s)− (γ+ µ)Î(s)

sαR̂(s)− sα−1R(0) = γÎ(s)− µR̂(s)

(18)

We then find by applying the definition 15 for the system (10), for the SEI model and the

following system is obtained, respectively for the given equations.
sαŜ(s)− sα−1S(0) = Λ

s
− µŜ(s)− β

N
SI + γÎ(s)

sαÊ(s)− sα−1E(0) = β
N
SI − (ε+ µ)Ê(s)

sαÎ(s)− sα−1I(0) = εÊ(s)− (γ+ µ)Î(s)

(19)

Then, we find from the application of the definition 15 for the system (11), for the MSIR

model and the following system is obtained, respectively for the given equations.
sαM̂(s)− sα−1M(0) = Λ

s
− (δ+ µ)M̂(s)

sαŜ(s)− sα−1S(0) = δM̂(s)− β
N
SI − µŜ(s)

sαÎ(s)− sα−1I(0) = β
N
SI − (γ+ µ)Î(s)

sαR̂(s)− sα−1R(0) = γÎ(s)− µR̂(s)

(20)

Then, we find from the application of the definition 15 for the system (12), for the MSEIR

model and the following system is obtained, respectively for the given equations.
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sαM̂(s)− sα−1M(0) = Λ
s
− (δ+ µ)M̂(s)

sαŜ(s)− sα−1S(0) = δM̂(s)−− β
N
SI − µŜ(s)

sαÊ(s)− sα−1E(0) = β
N
SI − (ε+ µ)Ê(s)

sαÎ(s)− sα−1I(0) = β
N
SI − (γ+ µ)Î(s)

sαR̂(s)− sα−1R(0) = γÎ(s)− µR̂(s)

(21)

Finally, we find from the application of the definition 15 for the system (13), for the double

SI model, in the proposed case for Zika virus. For uniformity in writing complex equations

after the Laplace transform, we will need the following integrals, with similar reasoning to the

equation (17).

SIhh =
1

2πi
lim
T→∞

∫ Re(z)+iT

Re(z)−iT

Ŝh(z)Îh(s− z)dz

SIhm =
1

2πi
lim
T→∞

∫ Re(z)+iT

Re(z)−iT

Ŝh(z)Îm(s− z)dz

SImh =
1

2πi
lim
T→∞

∫ Re(z)+iT

Re(z)−iT

Ŝm(z)Îh(s− z)dz

So, through the Laplace transformation the following system is obtained, respectively for

the given equations.


sαŜh(s)− sα−1Sh(0) =

Λh

s
− β1SIhh − β2SIhm − k1Ŝh(s)

sαÎh(s)− sα−1Ih(0) = β1SIhh + β2SIhm − k1Îh(s)

sαŜm(s)− sα−1Sm(0) =
Λm

s
− µSImh − k2Ŝm(s)

sαÎm(s)− sα−1Im(0) = µSImh − k2Îm(s)

(22)

In the above systems, all initial conditions are known, depending on the virus and the model

we are studying each time, in terms of the data given.

3.3. Representation of the results of transformations in matrices

Expressing the equations of Laplace transforms in tabular form can offer many advantages

and insights. By representing the equations in a matrix, we can utilize the powerful tools and

techniques of linear algebra to analyze and solve the system more efficiently. A key advantage

is the ability to apply matrix operations and manipulations to the equations. This allows

us to perform operations such as matrix inversion, calculating determinants and eigenvalue

analysis, which can help us understand the stability, controllability and observability of

the system.In addition, the matrix representation allows us to use existing algorithms and

numerical methods to solve systems of equations. Techniques such as Gaussian elimination, LU

decomposition and eigenvalue decomposition can be easily applied to analyze system behavior

and response.Another advantage is the concise and organized representation of the equations.

By arranging the variables and coefficients in a table, we can clearly see the relationships

and dependencies between the variables. This can help identify patterns, simplify equations

and provide a more intuitive understanding of system dynamics. In addition, expressing the

equations in tabular form facilitates the application of Laplace transformation techniques to

study the frequency response of the system. The matrix representation allows us to manipulate

and transform the equations directly using Laplace field operations such as multiplication,
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addition and differentiation. In summary, the expression of the Laplace transformation equations

in matrix form offers computational efficiency, analytical tools and a structured representation

of the system. It allows us to apply linear algebra techniques, exploit existing numerical methods

and gain insights into the behaviour and properties of the system. This matrix-based approach

enhances our ability to analyze, solve and understand complex systems described by Laplace

transforms.

More specifically, the models we saw before will be expressed in the form of analytical

matrices.As we have seen in the formula (15) the values s,α, n,, so we will study only Laplacian
and the complete result is obtained by simple substitution and application.

For the SIR model, from the system (16) we have the following matrix.

s
α 0 0

0 sα 0

0 0 sα


Ŝ(s)Î(s)

R̂(s)

−

s
α−1S(0)

sα−1I(0)

sα−1R(0)

 =

−µ − β
N
SI 0

0 −(γ+ µ) 0

0 γ −µ


Ŝ(s)Î(s)

R̂(s)

+


Λ
s

0

0

 (23)

For the SEIR model, from the system (18), we have the following matrix.
sα 0 0 0

0 sα 0 0

0 0 sα 0

0 0 0 sα



Ŝ(s)

Ê(s)

Î(s)

R̂(s)

−

sα−1S(0)

sα−1E(0)

sα−1I(0)

sα−1R(0)

 =


−µ β

N
SI 0 0

β
N
SI −(µ+ α) 0 0

0 α −(γ+ µ) 0

0 0 γ −µ



Ŝ(s)

Ê(s)

Î(s)

R̂(s)

+


µN
s

0

0

0


(24)

For the SEI model, from the system (19), we have the following matrix.

s
α 0 0

0 sα 0

0 0 sα


Ŝ(s)Î(s)

R̂(s)

−

s
α−1S(0)

sα−1E(0)

sα−1I(0)

 =

−µ 0 − β
N
SI

0 −(ε+ µ) ε

0 0 −(γ+ µ)


Ŝ(s)Ê(s)

Î(s)

−


Λ
s

0

0


(25)

For the MSIR model, from the system (20), we have the following matrix.
sα 0 0 0

0 sα 0 0

0 0 sα 0

0 0 0 sα



M̂(s)

Ŝ(s)

Î(s)

R̂(s)

−

sα−1S(0)

sα−1E(0)

sα−1I(0)

sα−1R(0)

 =


δ+ µ 0 0 0

µ δ − β
N
SI 0

0 β
N
SI −(γ+ µ) 0

0 0 γ −µ



M̂(s)

Ŝ(s)

Î(s)

R̂(s)

+


Λ
s

0

0

0


(26)

For the MSEIR model, from the system (21), we have the following matrix.
sα 0 0 0 0

0 sα 0 0 0

0 0 sα 0 0

0 0 0 sα 0

0 0 0 0 sα




M̂(s)

Ŝ(s)

Ê(s)

Î(s)

R̂(s)

−

sα−1M(0)

sα−1S(0)

sα−1E(0)

sα−1I(0)

sα−1R(0)

 =


δ+ µ 0 0 0

δ µ − β
N
SI 0

0 ε+ µ β
N
SI 0

0 0 γ+ µ β
N
SI

0 −µ 0 γ




M̂(s)

Ŝ(s)

Ê(s)

Î(s)

R̂(s)

+


Λ
s

0

0

0

0


(27)

For the double SI model of Zika virus transmission, from the system (22), we have the

following matrix.
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sα 0 0 0

0 sα 0 0

0 0 sα 0

0 0 0 sα



Ŝh(s)

Îh(s)

Ŝm(s)

Îm(s)

−


sα−1Sh(0)

sα−1Ih(0)

sα−1Sm(0)

sα−1Im(0)

 =


−β1SIhh − β2SIhm − k1 0 0 0

0 β1SIhh + β2SIhm − k1 0 0

0 0 −µSImh − k2 0

0 0 0 µSImh − k2



Ŝh(s)

Îh(s)

Ŝm(s)

Îm(s)

+


Λh

s

0
Λm

s

0


(28)

4. DISCUSSION

Another key reason for transforming the systems into matrices is the possible methods of

simplifying them, either by the method of arbitrary functions (setting a function of our own for

the functions S, I, R,M, Sh, Sm, Ih, Im and the operations between them), or by considering for

certain conditions any of the functions as fixed. Such methodologies and ideas may be useful in

future research on Caputo fractional derivatives and matrix resolution after Laplace transforms.

5. CONCLUSIONSAND SUGGESTIONS FOR FUTURE RESEARCH

In this paper, we try to give a relatively complete view on fractional calculus and more

specifically on Caputo fractional derivatives. We study some basic, internationally widespread

in the field of research, epidemiological models of ordinary differential equations and perform

transformations of the systems, first to Caputo derivatives and then Laplace transformations.

Finally, we transform the resulting equations into matrices. The main reason we did the last

transformation is because of the possibilities in the management of matrices and the algebraic

methods that lead to their solution.Also, the reasonwhywe dealt with the Laplace transformation

is its simplicity in computation compared to other transforms. By solving the systems/matrices in

a rigorouslymathematical way, it is possible to see the behaviour of theODEswithout the need to

find numerical solutions through approximations and to avoid the construction of computational

models using software and code.

The research community has not extensively addressed the potential of Caputo derivatives

and, more specifically, there is no literature on solving Caputo fractional derivatives after

Laplace transformation with classical methods of matrix solving. The format change gives us

additional possibilities in the use of the system functions, as mentioned in 3.3. In future research

we are going to study further the behavior of the double SI model, its transformation in Caputo

derivatives, the Laplace transformation and the attempt to solve the matrix with dimensions

4× 4. Some of the methods of simplifying a complex matrix are to consider some functions as
constants which can probably lead to direct results about the behaviour and equilibrium of the

system in question.

We would like to thank Dr. Andreas Kalogeropoulos and dedicate this paper to him, for introducing

us to the topic of fractional calculus and helping us conceive the main idea of this paper. We would also

like to thank the anonymous reviewers for their useful and insightful comments.
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