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Abstract. The outer membrane vesicles (OMVs), produced by many pathogenic 

bacteria, play a significant role in bacterial pathogenesis. They promote bacterial 

resistance to antibiotics and act as natural protective barriers. The study of OMVs 

is essential both for understanding the general mechanisms of bacterial 

pathogenicity and for the development of the antibacterial drugs. In this paper, we 

created model vesicle that imitate the OMVs of Gram-negative bacteria using 

molecular modeling techniques. To investigate the interaction of the cationic 

antimicrobial compounds with the outer lipopolysaccharide (LPS) monolayer and 

the inner phospholipid monolayer of the OMV membrane, we performed molecular 

dynamics simulations by placing molecules of the cationic antiseptic octenidine on 

the outside or inside of model vesicles. The interaction of octenidine with the outer 

and inner monolayer was significantly different: octenidine interacted weakly with 

the outer LPS surface of the model OMV, but exhibited high affinity for the 

phospholipids of the inner monolayer. To study the translocation of cationic 

antimicrobial molecules within model OMV, we performed steered molecular 

dynamics simulations. For all three cationic biocide molecules, antiseptic 

octenidine, photosensitizer octakis(cholinyl)zinc phthalocyanine, and dye 

methylene blue, it turned out that, along with the LPS of the outer membrane of the 

OMV, the phosphates of lipid A molecules represent the final barrier to their 

penetration into the model OMV. 
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INTRODUCTION 

Antimicrobial resistance is one of the largest public health threats worldwide. Infections 

associated with resistant pathogens are projected to cause 10 million deaths annually by 2050 

[1]. The vast majority of dangerous infectious pathogens are Gram-negative bacteria (GNB), 

including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Klebsiella 

pneumoniae, and other species. These bacteria have a wide range of intrinsic and acquired 

resistance mechanisms [2–5], making them resistant to many biocides, antibiotics, antiseptics, 

disinfectants, and antimicrobial peptides. Strategies for bacterial resistance include preventing 

biocides from accessing cells and from penetrating the cell wall, pumping from the cell, as 

well as neutralizing and chemically inactivating biocide molecules and modifying their 

cellular targets. 

GNB have several important intrinsic and acquired resistance mechanisms related to the 

cell wall and its derivatives. GNB have a unique structure – a complex cell wall, consisting of 

two membranes – outer and cytoplasmic, between which there is a layer of peptidoglycan in 

the periplasmic space. The lipid composition of the outer membrane differs from the 

cytoplasmic membrane. It is asymmetrical: the outer monolayer consists of 

lipopolysaccharides (LPSs) and the inner monolayer consists of phospholipids. LPSs provide 
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protection to GNB cells both at the level of the O-antigen, long polysaccharide chains that 

protrude into the external environment and are capable of trapping harmful molecules, 

preventing them from entering the cell, and at the level of the core region and polar heads of 

lipid A molecules, which create an energy barrier to the translocation of unwanted molecules 

through the cell wall [6, 7]. 

Outer membrane vesicles (OMVs), which are cell wall derivatives, play an important 

protective role in addition to other extracellular structures such as capsules, 

exopolysaccharides, and biofilm matrix components. OMVs formation is common and 

characteristic of GNB [8]. Almost all GNB species, including representatives of the ESKAPE 

group of pathogens, produce OMVs [9]. OMVs have a diameter of 20–250 nm [10–12]. 

These vesicles form as protrusions of the outer membrane and bud from the bacterial cell. 

Their outer monolayer consists mainly of LPSs, and the inner monolayer consists of 

phospholipids. Proteins of the outer cell membrane are also embedded in the OMVs [10]. 

These vesicles also contain components of the periplasmic space, in particular, proteases, 

detoxification enzymes, and nucleases [13]. OMVs perform various functions important for 

bacterial cells [14–17], including transferring toxins [18–20], surface adhesins [21, 22], and 

virulence factors [15, 23]; cleaving extracellular material into simple molecules utilized for 

bacterial metabolism [24]; capturing metals, such as iron [25]; and removing protein 

aggregates and toxicants from the cell [15, 26]. OMVs can also serve as a biofilm nucleation 

factor, they maintain cohesion inside biofilms [8, 27] and provide communication between 

bacterial cells [28]. In addition to these functions, it is worth noting that OMVs can protect 

bacteria against antimicrobial substances through three main mechanisms: 1) encapsulation of 

antibiotics and their removal from the cell; 2) direct binding of antibiotics to the surface of 

OMVs; and 3) destruction of antibiotic molecules entering the OMV due to the action of 

periplasmic enzymes [29]. In particular, OMVs produced by Acholeplasma laidlawii have 

been shown to contain fluoroquinolone antibiotics such as ciprofloxacin [30], and OMVs 

produced by Pseudomonas aeruginosa contain aminoglycosides such as gentamicin [31], 

indicating that OMVs can remove antibiotics from the cell. OMV components can also 

directly bind antibacterial compounds. For example, compared with the wild type, the 

isogenic hyper-vesiculating yieM mutant of Escherichia coli demonstrated better survival 

after exposure to the cyclic cationic antimicrobial peptides polymyxin B and colistin [32], 

chicken cathelicidin CATH-2, human cathelicidin LL-37, and cathelicidin porcine PMAP-36 

[33]. Moreover, addition of purified OMVs to bacterial culture reduced the sensitivity of 

wild-type E. coli to cationic antimicrobial peptides. 

In A. baumannii, OMVs derived from polymyxin B-resistant strains provided protection 

to polymyxin B-sensitive strains [34]. In addition to resistance to antimicrobial peptides, 

OMVs can also confer resistance to other biocides. For example, OMVs from Porphyromonas 

gingivalis can capture the cationic antiseptic chlorhexidine [35]. The degradation of 

antimicrobial molecules within OMVs is supported by evidence that these vesicles may 

contain enzymes capable of degrading β-lactam antibiotics [13, 36, 37]. 

Studying the interactions of various biocides with OMVs is critical to understanding how 

this GNB pathogenicity factor functions. This, in turn, will help improve efficiency and 

develop new effective antibacterial drugs. Furthermore, OMVs can be used as containers for 

drug delivery [28]. This requires a detailed study of the interactions of compounds with 

different physicochemical properties with the LPS surface of OMVs, the translocation of 

antimicrobial agents into vesicles, their distribution within the internal vesicular space, and 

interactions with the inner phospholipid leaflet of OMV. 

In silico molecular model systems have made significant contributions to the development 

of antimicrobial agents. The MARTINI coarse-grained force field [38] is a powerful tool for 

studying the structure and dynamics of bacterial membranes [7, 39–41], as well as for 

studying intermolecular interactions and the underlying mechanisms of action of 

antimicrobials [42–49]. Because this force field uses particles composed of 3–4 heavy atoms 
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instead of individual atoms, it allows the study of large molecular dynamics systems, such as 

model liposomes, on time scales on the order of microseconds. 

In this study, within the MARTINI force field, we created a liposome model mimicking 

OMVs of GNBs. We compared the interactions of three different antimicrobials (the 

antiseptic octenidine, the photosensitizer octakis(cholinyl)zinc phthalocyanine, and the dye 

methylene blue) with model OMVs. Of particular interest was the study of the interactions of 

the cationic antiseptic octenidine in realistic concentrations, used in medical solutions, with 

both the external and internal surfaces of the OMV model. 

 

MATERIALS AND METHODS 

A coarse-grained molecular dynamics model of OMV with asymmetric lipid 

composition was created using CHARMM-GUI Martini Maker [39] in MARTINI force field 

[38] and had an internal radius of 12 nm. The outer monolayer of the model vesicle consisted 

of 919 rough (Ra) LPS (RAMP) [50] molecules, while the inner monolayer consisted of 1,273 

neutral palmitoyl oleoyl phosphatidylethanolamine (POPE), 70 negative cardiolipin (CDL2), 

and 70 negative palmitoyl oleoyl phosphatidylglycerol (POPG) lipids. The composition of the 

model OMV was chosen based on [39]. The model OMV placed in the simulation box is 

shown in Figure 1. 

 

Fig. 1. The model OMV placed in the simulation box (molecules of water and ions are not shown). 

 

In equilibrium molecular dynamics simulations, octenidine molecules were added to the 

simulation box either outside the OMV or inside its interior volume at an antiseptic:lipid ratio 

of 1:4 or 1:8, respectively, given that there are approximately three lipid molecules per LPS 

molecule in the bacterial outer membrane [51, 52]. Because octenidine molecules rapidly 

aggregated, to reduce the box size, aggregates of octenidine obtained during auxiliary 

molecular dynamics simulations were randomly placed into the model vesicle as described 

above. 
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The model OMV with six pores was created following the conventional approach for 

building a vesicle using CHARMM-GUI Martini Maker. After energy minimization, 

molecular dynamics simulations of the OMV with open pores were performed for 1 μs. 

Position restrictions were applied to the OMV molecules to ensure uniform distribution of 

ions inside and outside the OMV. Molecular dynamics simulations were performed in the 

NPT ensemble with an integration step of 20 fs using a V-rescale thermostat  

(T = 320 K, τt = 1.0 ps) and a Parrinello-Rahman barostat (time constant = 12.0 ps, 

compressibility = 3 × 10−4 bar −1) with a polarizable water model (εr = 2.5) [53] and with the 

addition of Na+/Cl– ions at a concentration of 150 mM. Molecular dynamics calculations were 

performed using the Gromacs 2022.4 software [54]. To estimate the internal volume of the 

model vesicle, ProKSim (Protein Kinetics Simulator [55, 56] software was used. We used 

PyMOL [57] to visualize the molecular structures. 

To elucidate the translocation pathways of three different antibacterial compounds (the 

antiseptic octenidine, the photosensitizer octakis(cholinyl)zinc phthalocyanine, and the dye 

methylene blue) into the model OMV, we used steered molecular dynamics. To obtain force 

profiles during the translocation of biocides inside the model OMV, the center of mass of 

each biocide was pulled along the radius of the model OMV at a constant velocity of 1 nm/ns. 

The value of the harmonic spring of the force constant was 10.000 kJ mol–1 nm–2. Coarse-

grained molecular dynamics models of octakis(cholinyl)zinc phthalocyanine, octenidine, and 

methylene blue have been created earlier [58–60]. Details of the molecular dynamics systems 

are presented in Table 1. 

 
Table 1. Details of the molecular dynamics (MD) systems 

MD 

system 

number 

Type of MD  

simulations 
Biocide 

Number of 

biocide 

molecules 

Number of 

water 

molecules 

Box size, nm 

  1 Equilibrium MD 
Octenidine  

(outside the OMV) 
675 771.062 46.2 × 46.2 × 46.2 

  2 Equilibrium MD 
Octenidine  

(inside the OMV) 
175 675.379 44.3 × 44.3 × 44.3 

  3 Steered MD Octenidine 1 680.081 45.7 × 45.7 × 45.7 

  4 Steered MD 
Octakis(cholinyl)zinc 

Phthalocyanine 
1 679.937 45.7 × 45.7 × 45.7 

  5 Steered MD Methylene blue 1 680.103 45.7 × 45.7 × 45.7 

 

RESULTS 

Interaction of the cationic antiseptic octenidine with the outer LPS monolayer of the 

model OMV  

Using the molecular dynamics model (1) (Table 1), we studied the interaction of the 

antiseptic octenidine and the outer LPS monolayer of the model OMV for 2.3 µs. During the 

simulation, antiseptic aggregates that were initially randomly placed outside the OMV 

collided with each other, aggregating and forming clusters of more molecules. At the 

beginning of the simulation, clusters of only 25 molecules were present (Figs. 2,a and Fig. 3). 

After about 20 ns, the clusters began to merge in pairs, then in groups of three at 50 ns, and by 

100 ns, four clusters had merged into a larger cluster (Fig. 3). After 2 µs of simulation, the 

initial clusters had almost disappeared, with the largest clusters consisting of more than 100 

octenidine molecules (Figs. 2,b and Fig. 3). The aggregates were not stable and, during 

molecular dynamics, were sometimes adsorbed onto OMV, dissociated from the vesicle 

surface, and merged with other aggregates. However, the key point was that they not only did 
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not penetrate the model vesicle but also did not reach the core region of the LPS molecules in 

the outer monolayer of OMV. As a result, we can conclude that even the outer bacterial 

membrane, consisting of rough LPS molecules without O-antigens, acts as a reliable barrier to 

the penetration of biocide into OMVs and bacterial cells. 

 

  

a) b) 

Fig. 2. Interaction of octenidine (shown in purple) with the outer surface of the model OMV: snapshots of 

molecular dynamics simulation at initial time (a) and 2300 ns (b). 

 

 

Fig. 3. Aggregation of octenidine molecules during interaction with the outer surface of the model OMV. 
 

Outer LPS monolayer as a barrier to the translocation of several types of cationic 

biocides into the model OMV  

The translocation of the three biocides into the model OMV was studied using molecular 

models (3)–(5) (Table 1) via steered molecular dynamics. To simulate this process, molecules 

of various chemical groups were selected, including the cationic antiseptic octenidine, the 

photosensitizers octakis(cholinyl)zinc phthalocyanine, and the dye methylene blue (Fig. 4). 

Octakis(cholinyl)zinc phthalocyanine is a macrocyclic compound derived from zinc 

phthalocyanine with eight peripheral choline substituents, whereas octenidine is a dipyridine 

derivative, a linear molecule with a flexible linker between two pyridine groups; methylene 

blue is a heterocyclic phenothiazine dye. The molecules studied differed in charge, shape, and 
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size. In particular, octakis(cholinyl)zinc phthalocyanine has a charge of +8, octenidine +2, and 

methylene blue +1. 

 

   

a) b) c) 

Fig. 4. Spatial structures of the studied biocides: the antiseptic octenidine (a), the photosensitizer 

octakis(cholinyl) zinc phthalocyanine (b), the dye methylene blue (c). 
 

When the octenidine molecule entered the outer core region of the LPS molecules of the 

OMV outer monolayer at 5 ns, the maximum force was approximately 600 pN (Fig. 5,a). The 

high force is due to electrostatic contact between the positively charged octenidine molecule 

and the negatively charged groups of the core region and the lipid A phosphates of the LPS 

molecules. Further, after passing through the outer monolayer of the vesicle, the force rapidly 

decreased due to the weakening of electrostatic interactions with the outer LPS monolayer of 

the OMV and reached approximately 200 pN within approximately 9 ns, which corresponds 

to the release of the octenidine molecule into the vesicle. 

When a octakis(cholinyl) zinc phthalocyanine molecule was pulled through a model 

vesicle (Fig. 5,b), the force increased to approximately 1500 pN. This value is 2.5 times 

greater than that of octenidine since the octakis(cholinyl) zinc phthalocyanine molecule is 

larger in size and mass (1395 Da versus 553 Da for octenidine), and has a stronger positive 

charge (+8 versus +2 for octenidine). Furthermore, these compounds have fundamentally 

different chemical structures and geometries: the phthalocyanine molecule contains a rigid 

macrocyclic ring with peripheral substituents, whereas the octenidine molecule is linear and 

flexible. 

The highest force for methylene blue when pulled into the model OMV was 

approximately 300 pN (Fig. 5,c), which is 5 times less than that of octakis(cholinyl) zinc 

phthalocyanine and 2 times less than that of octenidine. This corresponds to the smaller size, 

mass (284 Da), and electrical charge (+1) of the methylene blue molecules. 

Thus, the LPSs of the outer monolayer of the model vesicle, containing a significant 

amount of negatively charged groups, act as a barrier to the translocation of all studied 

biocide molecules into the OMV. 
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a) b) c) 

Fig. 5. Force profiles for the translocation of octenidine (a), octakis(cholinyl) zinc phthalocyanine (b), 

and methylene blue (c) into the model OMV. Force profiles for independent runs of steered molecular 

dynamics are shown in different colors. 
 

Interaction of the cationic antiseptic octenidine with the phospholipid monolayer of the 

model OMV  

Since the translocation of the antiseptic octenidine into the model vesicle did not occur for 

approximately 2 μs, a molecular dynamics system (2) was studied in which, at the initial time, 

octenidine molecules were placed directly into the internal volume of the model vesicle 

(Fig. 6,a). The interaction of octenidine with the inner phospholipid leaflet was radically 

different from its interaction with the outer LPS monolayer (Fig. 6). Thus, the process of 

octenidine molecules embedding into the inner monolayer of OMV with the simultaneous 

disintegration of the aggregates began almost immediately. After approximately 500 ns, most 

of the octenidine molecules detached from the aggregates and embedded into the lipid 

monolayer (Fig. 6,b). At this time, one large aggregate containing more than 50 molecules 

still existed, but it completely disappeared after 2 μs, since its molecules were also embedded 

in the phospholipid monolayer (Fig. 6,c). After 4 μs, octenidine molecules were evenly 

distributed throughout the lipid monolayer (Fig. 6d). This is also illustrated by the average 

distance between the centers of mass of individual octenidine molecules and the center of 

mass of the model vesicle (Fig. 7,a). The plot shows that the number of octenidine molecules 

incorporated into the inner monolayer increases significantly shortly after the start of the 

simulation. By 500 ns, more than half of the octenidine molecules had already embedded into 

the monolayer, and by 2 μs, almost all the molecules had embedded, as evidenced by the 

average distance between the centers of mass of individual antiseptic molecules and the center 

of the model vesicle slightly exceeding 80 Å, which approximately corresponds to the internal 

radius of the OMV. 

To assess the effect of the antiseptic on the structural characteristics of the OMV during 

its interaction, the internal volume of the model vesicle was measured. To do this, the entire 

internal volume was divided into cubic cells 1 Å in size, and the number of cells containing 

the solvent was counted. The internal volume of the model vesicle changed slightly during the 

molecular dynamics simulation. Initially, the internal volume of the vesicle was 2.045 nm3, 

which decreased to a value of 1.980 nm3 in 4 μs. A visualization of the internal volume of the 

OMV in several molecular dynamics frames is shown in Figure 7,b. 
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a) b) c) d) 

Fig. 6. Interaction of octenidine with the phospholipid monolayer of the model OMV: snapshots of 

molecular dynamics simulation at initial time (a), 500 ns (b), 2000 ns (c), and 4000 ns (d). The core 

region of LPS molecules is shown in beige, acyl chains of lipid A of the outer monolayer and lipids of the 

inner monolayer are shown in green, and octenidine molecules are shown in purple. 

 

 

 

 

a) b) 

Fig. 7. Interaction parameters of octenidine with the phospholipid monolayer of the model OMV. 

Average distance between the center of mass (COM) of each single octenidine molecule and the COM of 

the model OMV during the molecular dynamics simulation (a). Visualization of the internal volume of 

the model vesicle during molecular dynamics. 

 

DISCUSSION 

In this work, we created a coarse-grained molecular dynamics model of a vesicle, the 

outer layer of which consists of LPSs and the inner monolayer of phospholipids. The model is 

similar in structure and lipid composition to OMVs of GNBs, which originate from the outer 

membrane of the bacterial cell wall. The permeability barriers of these bacteria are designed 

to reliably prevent biocides with different physicochemical characteristics from entering the 

cell [61, 62]. The outer layer of OMVs is built mainly of LPS molecules, which contain O-

antigen chains that extend outward and can reach tens of nanometers in length. These O-

antigens are composed of repeating units with varying net charge and hydrophobicity. O-

antigen chains serve an important function in initial line of bacterial defense by acquiring 

antimicrobial chemicals away from the cell surface [63]. The core region of LPS molecules 

has negative charges, which are partially neutralized by inorganic calcium and magnesium 

ions, which bind and strengthen the LPS monolayer. The next barrier to antimicrobial 

compounds is lipid A. The polar heads of these glycolipids act as an energy barrier to 

hydrophobic molecules, making penetration more difficult than that of phospholipids [7, 41]. 

Lipid A molecules, in addition to glucosamine, contain saturated acyl chains. These chains 

have limited fluidity, which reduces the diffusion rate of lipophilic compounds by 50–100 

times. OMVs are miniature copies of bacterial cell walls with characteristic physicochemical 

properties. These vesicles are capable of binding biocide molecules at a distance from the 
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parent cell, protecting them from damage. Previously, we created models of flat bilayer 

membranes containing LPSs of P. aeruginosa either with negatively charged O5 O-antigens 

or with neutral polyrhamnose antigens [60]. Using these models, we showed that the 

photosensitizer octakis(cholinyl)zinc phthalocyanine, when interacting with a membrane 

containing negatively charged antigens, electrostatically binds to antigenic chains and does 

not reach the core region of LPS molecules. In the case of LPS membranes with 

polyrhamnose charge-neutral antigenic chains, metallophthalocyanine molecules practically 

do not bind to antigens and also do not reach the core of the LPSs. For smaller and less 

charged methylene blue molecules, the antigens of both types do not constitute an absolute 

barrier to octacationic zinc phthalocyanine. Molecular dynamics simulations demonstrated 

that individual methylene blue molecules can penetrate to the outer saccharides of the LPS 

core region. 

Thus, LPS antigens may create a primary barrier to the penetration of antimicrobial 

compounds. However, it was found that in chronic infections with P. aeruginosa [64] and 

when exposed to high temperatures [65], antigens are not produced and are not present in LPS 

membranes. Additionally, the distribution of LPS molecules in the outer membrane is 

irregular, which leads to the formation of areas with rough LPSs that lack antigens [66]. 

Therefore, it would be interesting to investigate whether rough LPSs itself could create a 

barrier to biocide permeation. In this work, we investigated the barrier properties of OMV 

containing rough LPS molecules in the outer monolayer, in the presence of the cationic 

antiseptic octenidine. Octenidine is an aminopyridine derivative and bears two positive 

charges connected by a flexible hydrophobic alkyl linker [67]. Octenidine has antibacterial 

activity against a wide range of bacteria [68]. During our molecular dynamics simulations, we 

observed that when octenidine interacts with the outer surface of OMVs, it forms large 

aggregates containing more than 100 molecules. These aggregates are sometimes adsorbed on 

the OMV surface. However, they do not penetrate inside the model vesicle, even into the core 

region of the LPS molecules (Fig. 2, 3). 

Given that in our previous study [60], small molecules such as methylene blue reached the 

core region of LPSs, it was interesting to study the contribution of the core region and lipid A 

in forming a barrier to the penetration of cationic biocides. To this end, we compared the 

translocation of the photosensitizer octakis(cholinyl) zinc phthalocyanine, the antiseptic 

octenidine, and the dye methylene blue into the model OMV. 

The equilibrium molecular dynamics results (Fig. 2) are consistent with the translocation 

profiles of octenidine inside the model OMV (Fig. 5,a), which show that a significant force of 

600 pN must be applied to the center of mass of octenidine to ensure its transport across the 

LPS-containing membrane of the model vesicle. The greatest force required to pull methylene 

blue into the OMV was approximately 300 pN. This is compatible with the lower mass  

(284 Da vs. 553 Da for octenidine), and lower electric charge (+1 vs. +2) of the methylene 

blue molecule. It is noteworthy that when modeling flat LPS membranes, individual 

methylene blue molecules can reach the core region of LPSs and even be partially 

incorporated into them [60]. This corresponds to half the peak force observed in the 

translocation profiles of methylene blue (Fig. 5,c) compared to that of octenidine (Fig. 5,a). 

When octakis(cholinyl) zinc phthalocyanine was pulled into the model vesicle, the force 

increased to approximately 1500 pN (Fig. 5,b). This number is 2.5 times greater than that of 

octenidine, presumably because the zinc phthalocyanine molecule is larger in size and mass 

(1395 Da versus 553 Da for octenidine) and has a stronger positive charge (+8 vs. +2 for 

octenidine). Methylene blue has 4.5 times less mass and 8 times less charge than zinc 

phthalocyanine, and its peak forces were 5 times lower when translocated into the model 

OMV. In addition, the studied biocides have fundamental differences in chemical structure 

and geometry. The photosensitizer based on zinc phthalocyanine is a macrocyclic compound 

with a rigid structure and eight peripheral choline substituents. On the other hand, the 

antiseptic octenidine is a linear and flexible molecule due to the presence of an alkyl linker 
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connecting positive charged groups. The photosensitizer methylene blue is a aromatic thiazine 

heterocycle with a rigid structure that carries a delocalized positive charge. Similarly, for the 

three biocides studied, the maximum force corresponds to the moment when the positive 

charges of the biocides are released from the phosphates of the lipid A molecules, which 

represents the final barrier to their penetration into the OMV. 

The discovery of considerable barriers of 300–600 pN for methylene blue and octenidine 

suggests that these biocides may enter the bacterial cells via an alternate pathway. It is 

believed that biocides with a molecular weight of up to 600 Da penetrate the outer membrane 

of GNB through porin channels and have an antibacterial effects on the bacterial plasma 

membrane and intracellular structures [6, 69]. However, the potential effects of biocides 

located in the periplasmic space on the phospholipid monolayer of the outer membrane are 

not fully understood. To simulate the situation where biocides reside in the periplasm or 

intravesicular space, 175 octenidine molecules were placed in a model OMV with an internal 

diameter of 24 nm. The interaction of octenidine molecules with the inner lipid monolayer 

was significantly different from the interaction with the outer LPS monolayer. The process of 

incorporation of octenidine molecules into the inner monolayer was rapid: more than half of 

all molecules were integrated in 500 ns and almost all in 2 μs (Figs. 6, 7). That is, octenidine 

practically does not interact with the outer LPS surface of the model vesicle, but has 

significant affinity for the lipids of its internal monolayer. Thus, the results of our modeling 

showed that OMVs, as a way to protect the bacterial cells from unwanted compounds, are 

able of capture and retain biocide molecules from the periplasmic space of the cell. The 

ability of OMVs to encapsulate cationic antiseptic molecules within the intravesicular space 

suggests that vesiculation may help reduce biocide concentrations in the periplasm. As a 

result, membranotropic biocides will become less effective and have less bactericidal effect. 

Our molecular dynamics results showed that the incorporation of antiseptic into the inner 

monolayer resulted in a small change in the geometry of the model vesicle. This is clearly 

visible at a long simulation time of 4 μs when visualizing the internal volume of the model 

OMV (Fig. 7,b). However, despite minor changes in morphology, the integrity of the model 

OMV membrane remains stable. This suggests that such vesicles can be used as containers for 

the delivery of cationic drug molecules. 
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================== МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ================= 

Катионные биоциды обладают тенденцией к 

встраиванию во внутренний монослой модельных 

везикул внешней мембраны грамотрицательных 

бактерий: результаты вычислительных 

экспериментов 

Холина Е.Г., Коваленко И.Б., Страховская М.Г. 

Московский государственный университет имени М.В. Ломоносова, Москва, Россия 
 

Аннотация. Везикулы наружной мембраны (OMV), продуцируемые 

многими патогенными бактериями, играют важную роль в патогенезе 

бактерий. Они способствуют устойчивости бактерий к антибиотикам и 

действуют как естественные защитные барьеры. Изучение OMV важно как 

для понимания общих механизмов патогенности бактерий, так и для 

разработки антибактериальных препаратов. В этой статье мы создали 

молекулярно-динамическую модель везикулы, которая имитирует OMV 

грамотрицательных бактерий. Для исследования взаимодействия катионных 

антимикробных соединений с внешним липополисахаридным и внутренним 

фосфолипидным монослоями OMV, мы провели расчеты молекулярной 

динамики, помещая молекулы катионного антисептика октенидина снаружи 

или внутри модельной везикулы. Взаимодействие октенидина с внешним и 

внутренним монослоем существенно различалось: октенидин слабо 

взаимодействовал с внешней липополисахаридной поверхностью модельной 

OMV, но проявлял высокое сродство к фосфолипидам внутреннего монослоя. 

Чтобы изучить транслокацию катионных антимикробных молекул внутрь 

модельной OMV, мы провели серию расчетов неравновесной молекулярной 

динамики. Для всех трех катионных молекул биоцидов — антисептика 

октенидина, фотосенсибилизатора октакис(холинил)фталоцианина цинка и 

красителя метиленового синего — оказалось, что липополисахариды 

наружной мембраны OMV представляют барьер на пути проникновения 

биоцидов внутрь OMV, при этом конечным барьером являются фосфаты в 

составе молекул липида А. 
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