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1. INTRODUCTION 

Nobel Prize for physiology and medicine in 2014 was awarded to John O'Keefe, Edward 

I. Moser, and May-Britt Moser for their studies of brain's space representation system (SRS). 

These researchers discovered two very important components of the SRS, place cells in the 

hippocampus and grid cells in the entorhinal cortex (EC). In the first part of our review we 

will describe the amazing properties of these neurons and their role in navigation and spatial 

memory. We will also describe other components of SRS such as time cells and head-

direction cells. Based on experimental results, many mathematical models have been 

proposed to explain how the SRS allows the animal to code its location in space and to 

memorize and recall the trajectories that lead to target positions. Some of these models will be 

the subject of the second part of the review. 

The essence of the results of the Nobel Prize winners is rather simple. In 1971 O'Keefe 

and Dostrovsky recorded the electrical activity of hippocampal neurons of freely moving rats. 

They found that these neurons start spiking at the moment when a rat reaches a specific 

position in the experimental platform and its body has a proper orientation [1]. Some years 

later O'Keefe found hippocampal neurons that fire in a specific place of experimental space 

independently of animal's orientation. These neurons were not responding to a simple sensory 

stimulus, nor to a specific motor behavior [2]. O'Keefe called these neurons place cells. A 

place cell has its 'own' place where it generates high frequency trains. The area in physical 

space where a place cell is active is called the place field. Thus, the place field is the receptive 

field of a place cell. O'Keefe supposed that an animal uses place cells to build the internal 

spatial map which is not associated with sensory stimuli [3] and which allows the animal to 

navigate in a given environment. The existence of such a map had been earlier predicted by 

Edward Tolman [4].  

The discovery of place cells aroused enthusiasm of some researchers and skeptical 

reaction of others. The criticism of methodological aspects of O'Keefe's work gradually 

subsided as the subsequent experiments of the leading neurobiologists (György Buzsáki, 
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Howard Eichenbaum, Larry Squire, and others) confirmed O'Keefe's results on place cells and 

added new unexpected information about their properties. Strong support for these results 

came in 2005 when Edward and May-Britt Moser together with their colleagues discovered 

what they called grid cells [5–7]. These cells are located in the EC that adjoins the 

hippocampus and is connected with the hippocampus by feedforward and feedback 

connections. Thus, it became clear that the researchers were able to find not an 

epiphenomenon, but essential components of the SRS.  

In contrast to place cells, grid cells do not code specific positions of the animal in physical 

space, but a set of positions that form a hexagonal lattice. Each grid cell has its own lattice of 

positions in which this cell becomes active and generates high-frequency spike trains. Thus, 

the animal has a whole set of hexagonal coordinate systems, allowing it to reliably determine 

its location in physical space.  

Later it was found that in addition to place cells and grid cells, other types of neurons 

participate in the operation of the SRS. These include head-direction cells which are active 

when the animal's head points in a specific direction [8–12]; boundary cells that respond to 

the presence of an environmental boundary at a particular distance and direction from an 

animal [13]; spatial view cells that fire when the animal looks at a certain part of the spatial 

environment [14]; time cells that fire at successive moments in temporally structured 

experiences [15]; and speed cells whose activity codes the speed of animal movements 

[16, 17]. There are also neurons that code the distance to an object and the direction to this 

object [18]. Recently, the bat's neurons have been found that code positions in three-

dimensional space [19]. It is premature to judge whether all the neural components necessary 

for animal navigation are known.  

It is worth to note that place cells and grid cells were only found in mammalians: mice, 

rats, monkeys, and humans. The knowledge about neural implementation of SRS of birds and 

fishes is much more restricted (some data about the navigation system of birds can be found 

in [20]). All further exposition is applied only to mammalians. 

The theory of spatial navigation of O'Keefe and Mosers does not comply with the 

traditional notions about the role of neurons in the realization of cognitive functions. 

Conventionally, it is believed that the activity of individual neurons does not have cognitive 

content: information carriers are not individual neurons, but large neural ensembles. This is 

why the neural memory is often metaphorically described as a hologram. The most popular 

mathematical model of associative memory of John Hopfield is a single-layer recurrent neural 

network in which the memory is implemented as a set of stable states of the whole neuronal 

ensemble constituting a network [21]. The discovery of place cells and grid cells undermines 

this concept, since information about the position in space is the final result of complex 

coding which is completed at the highest level in the hierarchy of brain structures (in the EC 

and the hippocampus).  

Of course, one should not think that a place cell is a repository of memory about a 

particular place in space. First, the place fields of different place cells can overlap, so one 

place in physical space is coded by many place cells in different parts of the hippocampus. 

Second, place cells are at the top of the pyramid of spatial event representation in the brain. 

All layers of this pyramid are important for memory storage. Apparently, place cells are 

related to working memory, while long term memory (including the memory about spatial 

events) is stored in the neocortex. 

The interest to the SRS is not only of theoretical, but also of medical nature. Place cells 

and grid cells are located in the structures of the brain which primarily suffer from 

Alzheimer's disease [22]. Therefore, in patients with Alzheimer's disease not only the 

processes of memorizing and recall are disrupted, but also spatial navigation. It is assumed 

that the studies of O'Keefe and Mosers can be useful both for the early diagnosis of 
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Alzheimer's disease and for understanding the pathological processes that occur in this disease 

in the hippocampal and entorhinal neurons. 

In the next section we describe experimental data related to the SRS, in Section 3 we 

consider some mathematical models that aim to reproduce and explain these data. In Section 4 

we summarize the state of the art in this field and outline the prospects of future research. 

2. EXPERIMENTAL DATA 

2.1. The hippocampus and entorhinal cortex. Structure and functions 

The hippocampus is a brain structure in the depth of the temporal lobes of the neocortex. 

Its two parts are located symmetrically in the medial temporal areas of the hemispheres. The 

shape of this structure slightly resembles a seahorse (hippocampus), for which it received its 

name (Fig. 1). 

In the cross-section the hippocampus is subdivided into several fields, the main fields are 

denoted as CA1 and CA3. Figure 2 presents a scheme of the interaction of the hippocampus 

with other brain areas suggested by Olga Vinogradova [23]. 
 

 

Fig. 1. Location of the hippocampus in the brain. The hippocampus is shown in dark lilac, the brainstem 

is green, and the amygdalae are lilac. 
 

The complexity of this scheme should not hide the important fact that the hippocampus 

receives two flows of input signals, one from the EC and the other from the medial septum-

diagonal band of Broca (MS-DB). The first input is formed in the medial and lateral parts of 

the EC (partially going through the subiculum) which in their turn receive the input signal 

from associative regions of the neocortex. The signal from the EC is divided into two flows: 

some connections go directly to the field CA1, while other connections go to the dentate 

gyrus and then to the field CA3. This is the so-called perforant path. The field CA3 projects 

connections to the CA1 via Schaffer collaterals.  

Locating at the top of the pyramid of convergent connections from primary regions of the 

cortex to higher levels of information processing [24], the hippocampus plays a central role in 

many brain functions. The information in the hippocampus is represented in a very condensed 

and integrated form, therefore hippocampal neurons respond to a wide variety of stimuli. In 

contrast to other brain areas, reliable identification of hippocampal functions still causes 

discussions. Various researchers specify such functions of the hippocampus as working 

memory storage, participation in formation and recall of the long term memory, novelty 

detection of external stimuli, conditioning of complex stimuli, integration of stimuli of 

different modalities, orientation in space. It is amazing, how this small and relatively simple 

structure can participate in so different types of behavior (some considerations about how the 

hippocampus combines memory and space navigation functions can be found in the papers 

[25, 26]). 
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Fig. 2. A scheme of hippocampal interaction. NC, neocortex; FD, fascia dentata (dentate gyrus); MEC, 

medial EC; LEC, lateral EC; PSB, presubiculum; CA1, CA3, hippocampal fields; MS-DB, medial 

septum-diagonal band of Broca; LS, lateral septum; RF, reticular formation of the brainstem; mRph, 

raphe nucleus; SUB, subiculum; MMB, medial mammillary body; MFB, medial forebrain bundle; AVT, 

anteroventral thalamic nucleus; PLC, posterior limbic cortex; PP, perforant path; mossy, mossy fibers; 

SC, Schaffer collaterals; F.pre, precommissural fornix; F.post, postcommissural fornix; MTT, 

mammillothalamic tract; Cing, cingulum [23]. 
 

The main types of neurons in the hippocampus are excitatory pyramidal neurons and 

inhibitory interneurons. Place cells are represented by pyramidal neurons. 

The main types of oscillatory activity in the hippocampus are the theta rhythm (4–8 Hz for 

humans, 4–12 Hz for rodents), gamma rhythm (40–90 Hz), and ripple oscillations (90–

150 Hz). It seems that the gamma rhythm and ripple oscillations are generated in the 

hippocampus autonomously; the theta rhythm is projected to the hippocampus from the MS-

DB and then spreads in various regions of the brain including the EC.  

The EC is subdivided into lateral and medial parts, which have similar histological 

organization, but significantly different functions [27]. The medial EC is important for animal 

navigation; this is the area, where grid cells and head direction cells are found. The lateral EC 

does not contain such neurons.  

The EC has a six-layer structure which is typical for the neocortex. Each layer is formed 

by principal neurons which send their collaterals to their own layer and the layers above (the 

neurons of layer V send their connections to layers V, VI, III, the neurons of layer III send 

their connections to layers III, II, I). Neurons of layer II are an exception: they send their 

connections up to layer I and down to layers III and V (the latter is innervated with less 

intensity). Thus, the neural networks of the EC have significant recurrence [27].  

Since grid cells have been found in the second layer of the medial EC, this region attracted 

much attention of the researchers. Functionally and morphologically, two types of principle 
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neurons are distinguished in the second layer: pyramidal neurons and stellate cells [28, 29]. 

Grid cells are presumably stellate cells. Stellate neurons do not directly innervate each other, 

they interact through inhibitory interneurons only. It is believed that pyramidal neurons excite 

stellate neurons, but their connections with each other and with other types of neurons are 

little known [28].  

2.2. Place cells 

After 1971, numerous experiments have been conducted to study the spiking activity of 

grid cells. The results of some experiments are shown in Figs. 3, 4. Figure 3,A shows 

schematically the activity of four place cells when the animal moves in a linear track. 

Figure 3,B shows the real activity of 80 place cells when the animal moves in a square 

enclosure. Each panel in Figure 3,B presents the experimental field, color denotes the level of 

activity of different neurons. Most of the recorded neurons are place cells, six neurons are 

interneurons whose activity is not associated with a particular place.  
 

 
Fig. 3. The activity of hippocampal place cells. А. The activity of place cells when the rat moves in a 

linear track. Each place cell is active when the animal comes to a particular part of the track which is 

called the place field. On the right there is a schematic representation of the activity of the place cell 

depending on the position of the rat in the track (dark blue – lack of activity, yellow – low activity, red – 

high activity). B. 80 maps of neural activity simultaneously recorded in the CA1 when the rat was moving 

in a square enclosure. Six neurons with constant activity are apparently interneurons [30, 31]. 
 

 

Fig. 4. The activity of a place cell. Black lines denote the trajectories of animal movements. Red color is 

associated with positions where this place cell demonstrates high activity [32]. 
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It can be seen from the figure that each place cell is activated when the animal hits a 

certain place in the experimental field and stops spiking when the animal leaves this place. 

Figure 4 shows the activity of a place cell when the rat was running in the experimental field. 

It has been shown that 30 %–50 % of pyramidal neurons in the CA1 are place cells with 

specific place fields. Place cells are also present in the CA3 (and even in the EC), but in a 

smaller amount than in the CA1. When an animal is put in a new environment, its place cells 

quickly (within 5 minutes) adapt to new place fields which then remain stable in the given 

environment. With a slight change in the environment, place cells retain their place fields, 

although they can to some extent change their activity.  

Space topography is not reflected in place fields: place cells with neighboring or 

overlapping place fields can be located in the hippocampus far from each other. Each place is 

coded by a population of place cells which are simultaneously active when the rat comes to a 

particular place. The order in which place cells are activated when the animal moves in a track 

can be reproduced either at the moment when the end of the track is reached [33] or during 

non-REM (slow-wave) and REM sleep [34]. The place cells firing can be played in forward 

and reverse order. In the latter case the rat 'recalls' its movements from the end to the start. 

Note that recalls are much faster than real movements. It is believed that such recalls serve for 

the formation of long term memory.  

2.3. Phase precession 

An unexpected and important phenomenon about place cell activity was discovered in 

the last decade of the XX century [35, 36], that is more than 20 years after place cells had 

been discovered. This phenomenon is called phase precession. It is schematically illustrated 

in Fig. 5. Note that receptive fields of different place cells in the CA1 and CA3 may overlap 

(more or less). When an animal is in exploring behavior, the local field potential registered in 

its hippocampus contains a strong theta rhythm component. It turned out that the moment 

when a place cell generates a spike train is bound to the phase of the theta rhythm and 

depends on the position of the animal relative to the center of the place field.  

 

Fig. 5. Phase precession. A place cell generates spikes at the moments, advancing or lagging behind the 

peaks of the theta rhythm, depending on the position of the animal relative to the center of the place field. 

This phenomenon allows for the formation of spatial memory via synaptic plasticity [37]. 
 

Consider an animal moving in a linear track. If the animal is in the center of the place field 

of the 'green' place cell, this cell generates spikes for some time immediately after the moment 

when the theta wave reached its maximum (Fig. 5). Moving further, the animal enters the 
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place where the receptive fields of the 'green' and 'red' place cells intersect. The 'green' place 

cell may continue spiking, but now the 'red' place cell becomes active. Spikes generated by 

the 'red' place cell are lagging behind the maximum of the theta wave. By the time when the 

animal moves to the center of the field of the 'red' place cell, the next wave of theta rhythm 

appears. Now the 'red' place cell begins spiking at the moment of the maximum of the theta 

wave. Spiking of the 'green' place cell goes ahead of this peak, and spiking of the 'blue' place 

cell is behind this peak. In the same way, when the animal approaches to the center of the 

'blue' place cell, this cell starts spiking at the moment when the theta wave reaches its 

maximum. The 'green' place cell is already silent at that moment, since the animal is out of its 

place field, while spiking of the 'red' place cell goes ahead of the maximum of the theta wave.  

It is assumed that such a temporal organization of the activity of place cells is necessary 

for the creation (strengthening) of proper connections (synapses) between place cells in the 

course of learning to orient in space. Due to synaptic plasticity, the connections between place 

cells in the fields CA1 or CA3, which are discharged with a short time delay, are amplified. 

This mechanism allows the animal to memorize and recall the sequence of movements in 

direct order. Anti-plasticity (when the connection from a neuron that discharges a little later to 

a neuron that fired a little earlier) allows for memory storage and recall of the sequence of 

positions in reverse order [38]. Moreover, synchronous firing of place cells with similar place 

fields in the CA1 and CA3 which are connected by Schaffer collaterals must lead to 

strengthening the connections between these neurons and hence to coordination of their 

activity. All this creates conditions for encoding motion trajectories and formation of spatial 

memory. 

2.4. Grid cells 

Grid cells have been discovered in layer 2/3 of the medial EC of rats [5]. The activity of 

these neurons is conditioned by space location of the animal, namely these neurons generate 

spikes when the animal is at the nodes of a hexagonal lattice (Fig. 6). Later grid cells were 

found in other mammals: mice [39], bats [40], monkeys [41] and humans [42].  

 

 

Fig. 6. Basic properties of grid cells. A. Firing fields of a grid cell during 30 min of running in a large 

circular enclosure. Left, trajectory of the rat (gray) with superimposed spike locations (red). Middle, 

color-coded rate map with the peak rate indicated. Red is maximum, dark blue is zero. Right, spatial 

autocorrelation for each rate map. The color scale is from blue through green to red. B. Cartoons of firing 

patterns of pairs of grid cells (shown in blue and green), illustrating the differences between grid scale, 

grid orientation and grid phase. Lines in left and middle panels indicate two axes of the grid pattern 

(which define grid orientation); crosses in the panel on the right indicate grid phase (x–y location of grid 

fields) [7]. 
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The proportion of grid cells in the second layer of the EC ranges from 68 % [43] to 26 % 

[44] and even to 18 % [45]. Both grid and nongrid cells can be characterized as spatially 

selective [16, 45]. Grid cells are also found in presubiculum and parasubiculum [46]. 

Pyramidal and stellate neurons are identified morphologically in layer 2/3 of the medial EC. 

Grid cells are represented by stellate neurons in this region [29, 47]. About 25 % of stellate 

neurons show themselves as grid cells [47].  

Besides grid cells, there are many other types of functionally different neurons in the 

medial EC, the activity of about 96 % of them is modulated by a position of the animal in 

space [45]. 

The grid of each grid cell is characterized by three parameters: 

1. Orientation, angular deviation from the reference direction. 

2. Phase, the vector of lattice displacement relative to the reference point. 

3. Scale, the distance between adjacent grid vertices.  

Adjacent grid cells have similar values of scale and orientation, but they can have 

different phases [5]. The grid scale gradually increases in the direction from dorsal to ventral 

parts of the EC [48]. The grid scale changes discretely so that scale values form clusters. The 

distance between the centers of these clusters is approximately a multiple of 1.4 [49].  

It has been shown that grid cells and the neurons of other types are arranged into spatial 

and functional groups. In particular, this means that the correlation between spiking activity 

of grid cells as a function of the physical distance between these cells has the form of a 

Mexican hat: nearby neurons fire synchronously, while spike sequences of more distant 

neurons are anti-correlated [29, 50].  

The stable activity of grid cells is maintained independently of visual stimuli and persists 

even in the darkness. On the other hand, the activity of grid cells can be evoked by the visual 

input [41]. The activity of grid cells appears nearly immediately after the animal is put in a 

new environment. Based on this fact, it is assumed that the system of grid cells does not 

require learning (adaptation to the new environment). 

If visual cues or environment are changed, the grid scale of a particular grid cell and its 

activity remain unchanged [5], but the orientation and phase are anchored to the new system 

of space coordinates. Distortion of the known environment (by shifting a wall of the box 

where the rat foraged) leads to the change of the activity of grid cells whose place fields are 

near the distorted boundary, while the activity of other grid cells is kept unchanged [51]. 

The important aspect of experimental data is concerned with the relations between the 

activity of grid cells and the theta rhythm. The theta rhythm may be projected to the EC not 

only from the hippocampus, but also directly from the MS-DB. The MS-DB as a pacemaker 

of the theta rhythm generates the input to the hippocampus from the side of the brainstem 

[52, 53]. However, the connections from the MS-DB also go to the EC. The medial part of 

projections from the MS-DB is approximately two times larger than the lateral part. The main 

rhythmic output from the MS-DB is produced by GABAergic neurons which selectively 

innervate interneurons of the EC [54]. Beside GABAergic connections, the EC obtains 

cholinergic projections from the MS-DB. Cholinergic neurons of the septum nonselectively 

innervate all neural populations of the EC. The density of cholinergic receptors on stellate 

cells (assumed to be grid cells) of layer 2/3 of the EC is two times lower than on the 

pyramidal neurons of this layer [29]. Thus, it can be concluded that grid cells do not directly 

receive a rhythmic input at the theta frequency, but only through other neuronal populations 

of the EC.  

It is known that glutamatergic neurons of the MS-DB can play the role of speed cells, 

therefore they can participate in the formation of grid cells due to their projections in the 

upper layers of the medial EC [55–57]. In the paper [58], it is shown that the frequency of the 

theta rhythm in the hippocampus linearly depends on the spiking frequency of glutamatergic 

neurons of the MS-DB. This effect is mediated by the intraseptal switching through 

http://f1000.com/work/citation?ids=5725324&pre=&suf=&sa=0
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GABAergic neurons. This evidence complies with the well known fact that the frequency and 

the power of the theta rhythm in the hippocampus are correlated with the animal's speed 

[59, 60]. Thus, one can expect that not only the glutamatergic input, but also the GABAergic 

input to the EC contains the information about the animal speed. 

As for place cells, phase precession has been observed for grid cells in relation to the local 

theta rhythm [61]. Moreover, under pharmacological blockade of the theta rhythm by the 

inhibitors of cholinergic transmission or under the blockade of the MS-DB, the normal 

activity of grid cells is usually broken [62, 63]. However, in some special cases it can survive. 

Such cases are described for bats [40] and for grid cells in deep layers of the medial EC [43]. 

Functional interaction between place cells and grid cells is still unclear. From one hand, it 

would be reasonable to suppose that the activity of place cells is controlled by the activity of 

grid cells, since the former give higher representation of space. This point of view is 

supported by the fact that stellate cells of layer 2/3 of the EC send their connections to the 

hippocampus both directly to the fields CA1 and CA3 and indirectly through the dentate 

gyrus. Thus, one can think that grid cells are the direct source of excitation for place cells. 

However, from the other hand, there are many data evidencing that the activity of place cells 

is leading in relation to grid cells. This concept is supported by the fact that the hippocampus 

sends its connections to deep layers of the EC. In their turn, the neurons from these layers 

send signals to the second layer. Besides, it is shown that during ontogenesis the grid cells are 

the last to appear. For example, for the rats they appear on the 17–20th day of postnatal 

development when all other neural systems associated with navigation (head-direction cells, 

boundary cells, and place cells) are already formed [64]. 

Before grid cells become mature, the place fields of hippocampal place cells are lager than 

after maturing, therefore they provide less exact information about animal position. Grid cells 

loose their activity if the activity of the hippocampus is suppressed [65]. The remapping of 

place cells in the hippocampus can successfully go if the input to the hippocampus from the 

medial EC is blocked [66]. The most convincing data came from optogenetics. It has been 

shown that the inhibition of neurons in the medial EC does not lead to the disappearance of 

the activity of hippocampal place cells [44]. To explain these data, the hypothesis is put 

forward that place cells are supported by non-spatial information from the lateral EC [67]. In 

summary, we can say that place cells are not exclusively formed by the input from grid cells 

and that grid cells receive the input from place cells, which improves and stabilizes spatially 

coordinated activity of grid cells.  

2.5. Head direction cells 

Head direction (HD) cells are another important component of the SRS. They were 

discovered in the rat dorsal presubiculum by James B. Ranck, Jr. in 1984, but substantial 

papers on this subject were published by Ranck and co-authors in 1990 [8, 9]. Later HD cells 

have been found in many brain structures of the cortex (retrosplenial cortex and EC) and 

subcortex (thalamus, lateral mammillary nucleus, dorsal tegmental nucleus, and striatum). A 

striking feature of HD cells is that they discharge when the animal's head is facing in the cell's 

'preferred' direction (Fig. 7). All preferred directions are equally represented within a 

population of head direction cells. The activity of HD cells is independent of animal's position 

in space, the position of the animal's body relative to its head, and the animal's on-going 

behavior. Some HD cells can predict what the animal's head direction will be in the nearest 

future (25–95 ms in advance). The alignment of the HD system is preserved even in the 

darkness for some time, and restores a few minutes after the light is switched on.  

The HD system uses the environmental cues as its reference frame. When head direction 

cells are recorded in a cylinder-shaped environment that contains a prominent visual cue 

attached to the inside wall, the rotation of the salient visual landmark can lead to the 

corresponding shift in the head direction cell’s preferred firing direction. This indicates that 

http://f1000.com/work/citation?ids=4153285,4047186&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=5550265&pre=&suf=&sa=0
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head direction cells can be controlled by landmarks (Fig. 8). In the paper [68], it is shown that 

in fact the situation is even much more complex. HD cells in the retrosplenial cortex can be of 

at least three types: the cells that keep their preferred direction in two bi-directionally oriented 

compartments, the cells that change their preferred direction to the opposite one in these 

compartments, and the cells that have bi-directional firing patterns. 

 

Fig. 7. Firing rate of four HD cells corresponding to four directions of the rat's head [69]. 

 

Fig. 8. HD cell response to 180° cue rotation [70]. 

2.6. Time cells 

While place cells fire when an animal occupies a particular location in an environment, 

time cells fire when an animal is at a particular moment in a temporally structured experience. 

The researchers anticipated that there should be time cells in the hippocampus, because the 

hippocampus is involved in memorizing the order of sequential events and in classical trace 

conditioning when the duration of the gap between conditional and unconditional stimuli is a 

central component of memory representation.  

Time cells have been discovered in the laboratories of Howard Eichenbaum [71] and 

Gyorgy Buzsáki [72] (see a review [15]). Figure 9,A shows an idealized plot of time cell 

spiking activity in three experiments. Different cells fire in a sequence with longer duration of 

activity (longer 'time fields') for later-firing time cells. The periods of firing of each time cell 

are approximately the same for different trials. Figure 9,B shows a real activity of CA1 

neurons of a rat running in a wheel. The neurons are ordered according to the moments of 

their maximal firing rate: the neurons with higher numbers are active earlier in time. 

Importantly, each neuron is active during a brief time interval and the neurons’ firing covers 

the entire period of wheel running. It has also been established that a sequence in which time 



KAZANOVICH, MYSIN 

t142 

Mathematical Biology and Bioinformatics. 2018. V. 13. № S. doi: 10.17537/2018.13.t132 

cells fire is linked to the content of the trial. Firing sequences of time cells during wheel 

running were observed only after rats had been trained to remember particular paths through a 

maze and not during wheel running outside the memory task. 

The same neurons can play the role of place cells and time cells [73]. This is confirmed by 

the experiment when a rat performs a spatial alternation task that also includes running on a 

treadmill. It has been shown that the same neurons that fired at particular moments in time 

(time cells) on the treadmill also fired when the rat passed through specific locations of the 

maze outside the treadmill (place cells). 

3. MODELS 

The mathematical modeling of navigation is popular and promising field of research, since 

it has important applications in neurobiology, medicine, and robotics. The studies of O'Keefe 

and Mosers gave a powerful impetus to hundreds of publications. The modeling covers the 

following subjects:  

 How place cells and grid cells are used for the navigation and search of a goal? 

 What is the role of oscillations and phase relations for spatial information processing in 

the hippocampal system? How phase precession appears? What is the role of phase 

precession in coding positions in space? 

 How different neural components of the SRS interact with each other? 

 What neural mechanisms are used when an animal or a robot is trained to navigate in 

space? 

 Is the space navigation supported by special neural mechanisms or the memory 

formation has common forms for any type of declarative memory? 

Our review does not aim to provide a full coverage of these subjects. We confine 

ourselves to a small number of generic examples which should give general ideas of 

mathematical problems arising in this field and how they are solved.  
 

  
A       B 

Fig. 9. Time cells. A. A raster display of spiking activity from idealized, simultaneously recorded time 

cells (each shown in a different color). For each cell, activity is shown as a raster of spikes for three 

example trials in which the cell fires for a brief period at approximately the same moment in each trial, 

with later-firing time cells being active for longer periods (indicating scalar coding of time). B. The 

ensemble firing-rate during the wheel running period of a rat. The plot shows the normalized firing rates 

of 30 neurons (each row shows the activity of one neuron). The plot reveals that different hippocampal 

neurons fired at different times, and that together, the neurons’ firing covered the entire period [15]. 

3.1. A model of navigation in the Morris water maze 

A popular experimental paradigm used in spatial learning and memory is the Morris water 

maze [74]. The water maze is a large pool filled with milky water. There is a fixed submerged 

platform in the pool. The aim of the experiment is to train the animal (a rat or a mouse) that 

swims in water (these animals can swim, but water is an alien medium for them) to escape on 
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the platform by using space cues. There is a large amount of experimental data on the learning 

process and its disorders under various pathologies of the brain.  

The paper [75] describes a neurorobotic model Darwin X that is able to find the platform 

after some learning trials (Fig. 10). Darwin X moves on a hard surface, but his visual system 

does not allow the robot to see the 'hidden' platform. The platform can be detected if the robot 

is located directly on it or in the immediate vicinity. Spatial landmarks (cues) that are used by 

Darwin X for navigation are colored panels hung along the boundaries of the 'pool'. 

Darwin X is a brain-based device that interacts with real environment whose behavior is 

guided by a simulated nervous system, incorporating aspects of the detailed anatomy and 

physiology of the hippocampus and its surrounding regions. The information is processed in 

two channels ('what' and 'where'). The hippocampus plays the role of a coordinator of 

navigation. It is also the storage of the working memory. Darwin X is trained by the 

modification of connection strengths between the neocortex and the hippocampus, as well as 

in the hippocampus itself.  

A remarkable and unexpected result of experiments with Darwin X is that its training 

leads to the automatic formation of place cells in the field CA1 (Fig. 11). This was not 

planned in advance in the design of the neural network of the robot and, apparently, is a 

natural consequence of spatial orientation learning in an artificial system with a biologically 

plausible architecture of the interaction between the hippocampus and neocortex.  
 

 
А       B 

Fig. 10. Neurorobotic model of navigation of the Morris water maze. А – Schematic representation of the 

pool with a hidden platform. Numbers 1–4 denote four starting locations. B – Snapshot of Darwin X in its 

environment [75]. 

 
Fig. 11. The activity of place cells in the CA1 of the 'hippocampus' of Darwin X. The charts show the 

activity of four neurons (place cells) when the robot intersects their place fields. A pixel corresponds to 

one foot of physical space. The gray scale represents the activity of a given CA1 neuron and is 

normalized from quiescent (white) to maximal firing rate (black). The circle denotes the location of the 

hidden platform [75].  
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3.2. Path planning in a target search model 

The idea that synaptic plasticity between place cells can be used as a mechanism for the 

target search (see Section 2.3) has been realized as a mathematical model in the paper [76]. In 

this model, a training scheme is proposed that allows the animal to find the target object (for 

example, a food bowl). It is assumed that synaptic connections between place cells with 

overlapping place fields are formed in advance, so the training task is to strengthen certain 

synaptic connections in the network of place cells. 

This task is solved by a method reminiscent of dynamic programming, according to which 

the optimal path in the graph is found by moving from the end of the path to the beginning. In 

other words, one should start from the target vertex and move consistently to increasingly 

remote neighborhoods from it until the process reaches the initial vertex. In terms of the 

model, this procedure is implemented as follows. 

 

 

Fig. 12. Wavefront propagation in the Ponulak–Hopfield model for two different environments A and B. 

Cyan rings are the initiation points of the wavefronts. Red dots are the action potentials that occurred in a 

short time window, centered at the times indicated above the charts. Plots C and D show color maps of 

the average level of a neural adaptation in the particular regions of the network after a single wavefront 

passage up to the states illustrated in the right-far plots in A and B, respectively. Brighter colors represent 

lower excitability of the neurons at the corresponding locations [76]. 
 

First, the animal finds the location of the target object as a result of exploratory behavior. 

At this moment, the place cell, in whose receptive field the target object is located, sends an 

exciting spike to all neighboring place cells (here the term 'neighborhood' means the 

neighborhood in the graph of connectivity), which in turn send spikes to their neighbors, etc. 

(Fig. 12). To form a traveling excitation wave and to prevent the propagation of the 

excitement 'backward', a restriction is introduced: after excitation the place cell becomes 

inactive for some time. The excitation wave is gradually moving farther and farther from its 

source. Its propagation stops when it has passed through all the place cells or if its further 

spread is hampered by a barrier from place cells that had lost the ability to excite for a time. 

The rule for the modification of synaptic connections is of the anti-STDP (anti-spike-time-

dependant plasticity) type [77, 78]. It is formulated as follows. The synaptic connection 

increases if it goes from the place cell, which the excitation wave has just reached, to the 

place cell from which this excitation wave came. As a result, a vector field of amplified 

synaptic connections is formed in the network of place cells (Fig. 13). This field 'prompts' to 

the animal in which direction to move to reach the target object from any initial position. The 

animal must move in the direction indicated by the vector field of the strengthened synaptic 

connections. 

We described only the simplest navigation strategy within the Ponulak–Hopfield model. 

In fact, this model keeps its capacity to work under multiple targets, in the presence of noise 

in the activity of neurons, and when the context (environment) changes. More details can be 

found in the paper [76]. 
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Fig. 13. Synaptic vector fields resulting from the excitation wave and the typical movement trajectories in 

the environments of Fig. 12. S, starting point; T, target (final) point. A, B, vector fields; C, D, zoom of 

the vector fields around the bifurcations in the simulated mazes; E, F, movement trajectories [76]. 

3.3. A model of memorizing and recalling sequences of spatial events 

As we already mentioned in Section 2.3, the spatial memory can be reproduced as a 

sequence of activations of place cell populations in forward or backward order when the 

animal finished its movement [33] or during sleep [34], as well as in people when recalling an 

episode of the movement in virtual space [79]. This fact was put in the basis of the model of 

memorizing the sequence of events, which, in particular, describes the memorization and 

recall of animal positions in a linear track (Fig. 14) [38].  

In the model, there are 8 populations of place cells, each containing 80 neurons. Place 

cells belonging to the same population have highly intersecting place fields. Place fields of 

different populations do not intersect and cover the entire space of the linear track in which 

the animal moves. To conveniently represent the place cell activity, the populations are 

numbered so that they are sequentially activated when the animal moves from left to right. 

The activation time of each population is chosen so that the population remains active for 

approximately one period of the theta rhythm. The recall of the whole sequence takes one 

period of the theta rhythm after the animal reaches the end of the track. Fig. 14 shows an 

example where spatial positions are recalled in reverse order from the eighth population to the 

first one. 

Two independent neural mechanisms are used in the model to memorize sequences of 

positions: STDP (spike-time-dependant plasticity) and anti-STDP (anti-spike-time-dependant 

plasticity). According to STDP (anti-STDP), synaptic connections between two neurons are 

amplified if the postsynaptic neuron fires shortly after (before) presynaptic neuron. STDP 

between the populations of place cells is used to learn a sequence of positions in direct order, 

while anti-STDP allows for the recall of positions in reverse order. Figure 14 corresponds to 

the case of reverse memorization and recall which is based on anti-STDP. 
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Fig. 14. Memorization and backward recall of a sequence of positions when a rat moves in a linear track. 

Each small dot represents a spike. A. Storage and recall of eight positions of a rat along the track, 

represented by eight populations of neurons. The left part (time period 600–2200 ms) shows the 

activation of neurons (the encoding period). The right part (time period 2400–2600 ms) shows the reverse 

recall which is initiated by the activity pattern corresponding to the end of the track (the recalling period). 

B. A magnified picture of the encoding period shows noisy but coherent firing of neurons. The recall 

period shows the firing of neural populations one after another with a short delay between the firing of 

different populations [38]. 

3.4. Models of grid cells 

It is generally accepted that the grid cell system performs the function of path integration. 

This is a common opinion shared by the leading experimentalists in this field, such as 

Buzhaki and Moser [25], and the authors of the most influential models [80–82]. Three basic 

concepts for the formation of grid cells have been proposed: oscillatory interference, self-

organizing maps (SOM), and attractor maps. We consider them below. 

1. Oscillatory interference model. This model is promoted by the team of Neil Burgess 

and co-authors [82–85]. It is based on the assumption that there exist the so-called velocity-

controlled oscillators (VCO). A VCO is a neural population that generates a rhythmic signal 

whose frequency is proportional to the projection of animal's moving velocity on the preferred 

direction of the VCO. In the model, the preferred directions are chosen with the step of 60°. 

Grid cells receive an excitatory input from the VCO, as well as an excitatory rhythmic input 

with a stable frequency in the range of the theta rhythm.  

Signals that code the velocity of the animal in different directions interfere on grid cells 

(Fig. 15). The grid scale depends on the relation between the velocity and the frequency of the 

VCO. The grid orientation is determined by the preferred direction of the VCO. An advantage 

of this model is the fact that phase precession arises in the model without any additional 

conditions. 
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Fig. 15. The oscillatory interference model of grid cell firing. A. VCOs (red, green, and blue circles) 

spike periodically such that their spiking phases relative to a baseline oscillation (colored sinusoid) reflect 

translation along their preferred directions (black arrows) as the animal navigates its environment. Spike 

phase maps for a simulated run in a circular environment are shown above their respective cells (spike 

locations indicated by dots, color coded by baseline phase; see phase color bar). A grid cell is driven by 

VCOs with different preferred directions, and acts as a coincidence detector for spikes arriving from those 

inputs. The grid cell is additionally subject to modulation by the baseline oscillation (black sinusoidal 

arrow). These combined inputs cause the grid cell to fire when all VCOs spike during similar positive 

baseline phases (which occurs within the ringed regions on each spike phase map), giving the grid cell its 

spatial firing fields (grid cell, spike phase map is shown below the cell). The animal’s trajectory is shown 

as a gray line. B. Firing rate map of the grid cell. Multiples of 60° spacing (here 120°) between VCO 

preferred directions cause the firing fields to be arranged in a regular triangular grid. C. Leaky integration 

of VCO spikes by the grid cell [83]. 

 

2. Models based on self-organizing maps. This model was proposed by Stephen 

Grossberg and Praveen Pilly [81, 86]. The main assumption of the model is the existence of 

'stripe cells' in deep layers of the EC. The properties of stripe cells are similar to the properties 

of VCO in the oscillatory interference model described above. The firing frequency of a stripe 

cell is proportional to the projection of the animal's movement velocity on the preferred 

direction of the stripe cell. The layer of stripe cells excites the layer of grid cells (Fig. 16), the 

matrix of weights between these layers is tuned according to the rules similar to the Hebb 

rule. As a result of the learning process, a stable combination of active grid cells is formed 

that corresponds to a certain velocity of the animal. The authors also consider the projection 

of the layer of grid cells on the layer of place cells. The corresponding matrix of weights is 

also trained according to the Hebb rule. 
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Fig. 16. Self-organizing map hierarchy of grid and place cell activation and learning: stripe cells in either 

the parasubiculum or the deeper layers of medial EC, self-organizing grid cells in layer II and self-

organizing place cells in hippocampal area CA3 learn to represent position in increasingly large spaces 

based on internally generated signals corresponding to translational and rotational movements during 

navigation [81]. 
 

        

 
Fig. 17. An attractor model of formation of grid cells. А. Architecture of connections within a cluster (see 

the text). B. Controlling attractor movements. A signal about the direction of the movement comes from 

head direction cells. C. Position of a 'bump' of activity in the neural network that encodes a position of the 

animal [91].  

 

3. Models based on attractor neural networks. There is a large variety of attractor type 

models proposed by different authors [80, 87–92]. We will describe the main ideas in this 

field put forward in the last years. Attractor models are based on the assumption that there 

exist continuous attractors in the EC. By attractors we mean stable states of a neural network, 

in other words, states in which, in the absence of external stimuli, the same neurons remain 

active for a long time. Continuity of attractors implies that transitions between attractors can 

occur either with the passage of time or under the influence of external stimuli. Thus, at each 
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moment the attractor network contains active neurons that code the current position. Moving 

from one attractor to the other encodes the movement of the animal in space.  

A popular attractor model has been developed by McNaughton and co-authors [91, 92]. 

The main assumption of the model is that neurons in the EC form functional clusters. There 

are no connections between the clusters. Within a square cluster, the connections are wrapped 

around in a tor, that is the neurons at the boundaries innervate the neurons at the opposite side 

of the square (Fig. 17). Neurons have local synaptic connections, the strength of connections 

decreases with the distance between neurons. All neurons receive tonic inhibition. It is 

assumed that neighboring neurons have similar phases of their grids. The movement of the 

center of activity takes place not so much in physical space as in the space of phases of the 

grids.  

Various types of connections between grid cells depending on their phases have been 

proposed (Fig. 18), but the main ideas of attractor model construction are similar among all 

authors (see review [7]).  

 

 

Fig. 18. The dependence of synaptic weights between neurons on the phase difference of their grids in 

different attractor models [7]. 

 

Since connections between neurons are symmetric and decrease rapidly with distance, 

stable states of activity are possible which have the form of moving bumps. Under the 

influence of an external input, exciting neighboring neurons, the bump of activity can move to 

neighboring regions (Fig. 17,C). Such input signal can be produced by head direction cells 

that encode the direction of animal’s movement. 

There are some problems in the adequate reflection of experimental data by the model 

[91]. In particular, the role of the theta rhythm is not clear. There is a possibility to introduce 

phase precession in the model by introducing an additional rhythmic input [92], but the role of 

such a signal is vague. Nonetheless, lately the attractor models received a significant support 

from the works that show spatial and functional clusterization of neurons in the EC [29, 50].  

Another problem for attractor models is the speed of activity movement between adjacent 

states which theoretically must be proportional to the speed of the animal. The excitation in a 

neural network can move with more or less constant speed, while the speed of animal's 

movements can vary in a large range. It is believed that this problem can be solved by using 

grids with different scales.  

In conclusion we would like to attract attention to a recent paper whose basic ideas differ 

from those described above. In this paper, grid cells are formed via special rules of adaptation 

of connection strengths between the neurons of the EC [93]. There are excitatory and 

inhibitory neurons in the model (Fig. 19).  
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Fig. 19. Architecture of the model [93]. A. The 1D grid cell network consists of inhibitory and velocity-

sensitive excitatory cells. All cells are assigned location-specific inputs (gray bell-shaped curve: 

schematic of a location-specific input; dotted gray envelope suppresses location-specific inputs near the 

environment boundaries). B. Snapshot of population activity during the plasticity phase. C. Possible 

pathways for velocity and location-specific inputs to entorhinal grid cells [83]. 
 

Excitatory neurons do not project directly to each other. They interact only via inhibitory 

neurons. Connections from excitatory neurons to inhibitory neurons are modified according to 

the STDP rule. Connections between inhibitory neurons and from inhibitory to excitatory 

neurons are modified according to the anti-STDP rule. All excitatory neurons receive a 

specific input that encodes a position of the animal in space. Excitatory neurons are divided 

into two subpopulations, L and R, reacting to the turn of the animal, respectively, to the left 

and right side. Inhibitory neurons do not receive any spatially modulated input. After a short 

learning period that starts with randomly generated initial values of connection strengths, 

stable grid cells are formed in the model.  

It is also reasonable to attract attention to the papers, showing that the representation of 

space by grid cells is optimal in some sense. In the paper [94], the author gives an analytic 

proof that memory capacity of neurons that encode multiple spatial transitions is maximized 

by a hexagonal pattern. In the paper [95], deep reinforcement learning was used to train a 

recurrent neural network to perform path integration and goal finding in unfamiliar and 

changeable environments. It is shown that grid, border, and head direction cells automatically 

emerge in the model. Spatial scale of grid-like units is clustered as it is observed in the EC. 

Though the training procedure by backpropagation of errors does not seem biologically 

plausible, the model provides arguments in favor of computational efficiency of grid cells in 

coding space information. 

3.5. Models of interaction between place cells and grid cells  

Among the experimentalists, there is no consensus on the interaction of grid cells and 

place cells. As a consequence, various approaches have been put forward in modeling works. 

One of the first models in which it was assumed that place cells appear as a result of grid cell 

influence was suggested by the pioneers of grid cell investigation and their co-authors [96] 

(Fig. 20).  

Since grid cells directly excite place cells, the idea arises that the information on the 

position of the animal is simply recoded from one representation to another. Such 

transformation is demonstrated in the cited work. It is shown that the weighted sum of signals 

from grid cells with different parameters of orientation, phase, and scale leads to the 

formation of stable activity of place cells. This idea is shared by many authors of theoretical 

works [80, 81, 90]. 

http://f1000.com/work/citation?ids=5725319&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5230304&pre=&suf=&sa=0
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Fig. 20. Model for place-field formation. A. Assumed anatomical connectivity between grid cells in the 

medial EC (MEC) and place cells in the hippocampus (HPC). Grid cells (blue) are illustrated with small 

grid spacings in the dorsal pole of MEC and with larger grid spacings at more ventral levels. All place 

cells receive input from grid cells of similar spatial phase, but a diversity of spacings and orientations. 

Hippocampal place cells with a small firing field (green) are innervated by grid cells from more dorsal 

parts of the EC than place cells with a larger field (yellow). Connection weights are indicated by the 

thickness of the arrows. Interneurons (red) provide nonspecific inhibition to keep overall firing rates at 

physiological levels. The color code for the rate maps ranges from blue (0 Hz) to red (peak rate). B. Grid 

functions are constructed from a sum of three sinusoidal grating functions with 60 and 120 degrees 

angular difference, and can take any specified spatial phase, orientation, and spacing [96]. 
 

The inputs from place cells come into the second layer of the EC through deep layers, so 

place cells are capable of significantly modulating the activity of grid cells. Models of the 

transformation of the activity of place cells into the activity of grid cells are not popular in the 

literature, however, a spatially modulated input is used in many grid cell models. Its purpose 

is to stabilize the grid parameters in time and to avoid the accumulation of errors in the 

presence of a noise component in the input (see review [97]).  

The idea of a loop in the interaction between place cells and grid cells was developed in 

detail in the paper [98]. In this paper, grid cells were modeled by several disconnected 

attractor neural networks of different scales. Place cells were modeled by a recurrent network. 

Place cells received additional information about space cues which simulated the input from 

the lateral EC. Grid cells received the input modulated by the animal speed from speed cells. 

Feedforward and feedback connections were modified according to the Hebb rule (Fig. 21). It 

has been shown that place cells can be formed autonomously without the input from grid 

cells. However, the grid cell input to place cells helps stabilize their code under noisy and 

inconsistent sensory input. The realignment of grid cells in different environments can be 

explained by remapping of place cells, but not vice versa. This is in agreement with 

experimental data that remapping of place cells can go without the input from the EC [66]. 

Not all the researchers share a compromise idea about a loop in the interaction of grid 

cells and place cells. Some authors of theoretical works on this subject believe that place cells 

do not simply modulate and correct errors in the activity of grid cells, but play a leading role 

in the formation of grid cells. This idea is developed in a computer model [99], where grid 

cells are formed by the signals from inhibitory and excitatory neurons that demonstrate the 

features of place cells (Fig. 22), as supposed in the paper [100]. The main assumption of the 

model is that the inhibition is smoother than excitation when the animal moves in space. From 

http://f1000.com/work/citation?ids=5446427&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5550265&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3673930&pre=&suf=&sa=0
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a physiological point of view, this means that inhibitory neurons demonstrate the activity of 

place cells, but their place fields are larger that place fields of excitatory neurons (an 

experimental confirmation of this fact can be found in [101]). Both inhibitory and excitatory 

signals are mixed at the input of a grid cell, but since the excitation acts more locally, the grid 

cell only fires in the center of the place field. During animal's movement, another place cell 

and the corresponding interneurons are activated. As a result, the grid cell fires in the center 

of another pair of excitatory and inhibitory place cells. If the number of place cells is large 

enough, a periodic structure of grid cells is formed. The STDP of excitatory synapses and the 

plasticity of inhibitory synapses, that keeps a constant frequency of spikes of excitatory 

neurons [102], lead to strengthening and adoption of grid cell activity. It is interesting to 

compare the idea of different smoothness of excitation and inhibition with the mechanism of 

formation of a regular structure in a chemical reaction of two substances with different 

diffusion coefficients which has been studied by Alan Turing [103]. 

At present, the general opinion is that place cells in the hippocampus and grid cells in the 

medial EC are the key components in path integration and goal finding. It is also assumed that 

the activity of these cells is modulated by head direction cells. The important question that is 

under discussion in experiments and modeling concerns the principles of the interaction 

between place cells and grid cells.  

If it is true that place cells are leading in the formation of grid cells, then it would be 

reasonable to think that grid cells in the subicular complex and in the higher layers of the EC 

may have different origins. The subicular complex receives strong input from the CA1 field 

of the hippocampus, where most place cells are present. In the upper layers of the EC the 

hippocampal signal comes after switching in the subiculum and deep layers of the EC. Based 

on anatomical and model data, we can hypothesize that grid cells in the presubiculum and 

parasubiculum are formed due to influences from place cells, while in the EC they are formed 

by the signals from speed cells and other spatially modulated cells. 

 

 
 

Fig. 21. Model of place and grid cell network with bi-directional connectivity. Circles denote neuronal 

populations. Arrows represent synaptic connections. Synapses are either fixed (black) or plastic (red). 

Place cells recurrent collaterals are modeled implicitly by a pattern completion process. Grid cells 

recurrent collaterals are fixed and implement a continuous attractor network model [98]. 
 

The idea that place cells and grid cells are different representations of spatial information 

found an interesting interpretation and development in the paper [104]. In this paper, the 

authors contend that two representations of space in the form of spatial coordinates and in the 

http://f1000.com/work/citation?ids=28464&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1565817&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=182097&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5446427&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5859958&pre=&suf=&sa=0
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form of hexagonal lattices are the analogues of a function and its Fourier transform. In other 

words, the representation of space in terms of grid cell activity is an analogue of frequency 

representation, while place cells provide space representation in physical coordinates. Under 

this assumption, the transformation from grid cells to place cells can be considered as 

backward Fourier transform. The authors prove that there is a one-to-one mapping of these 

two space representation. 

 

 

C 

D 

A B 

 
 

Fig. 22. Emergence of periodic, invariant and single field firing patterns. A. Network model for a linear 

track. A threshold-linear output neuron (gray) receives input from excitatory (red) and inhibitory (blue) 

cells, which are spatially tuned (curves on top and bottom). B. Spatially tuned input with smoother 

inhibition than excitation. The fluctuating curves (top) show two exemplary spatial tunings (one is 

highlighted) of excitatory and inhibitory input neurons. Interacting excitatory and inhibitory synaptic 

plasticity gradually changes an initially random response of the output neuron (firing rate rout) into a 

periodic, grid cell-like activity pattern. C. The mechanism illustrating place cell-like input. When a single 

excitatory weight is increased relative to the others, the balancing inhibitory plasticity rule leads to an 

immediate increase of inhibition at the associated location. If inhibitory inputs are smoother than 

excitatory inputs, the resulting approximate balance creates a center surround field: a local overshoot of 

excitation (firing field) surrounded by an inhibitory corona. The next firing field emerges at a distance 

where the inhibition has faded out. Iterated, this results in a spatially periodic arrangement of firing fields. 

D. Inputs with place field-like tuning. Gaussian curves (top) show the spatial tuning of excitatory and 

inhibitory input neurons (one neuron of each kind is highlighted, 20% of all inputs are displayed). A grid 

cell firing pattern emerges from an initially random weight configuration [99]. 
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4. CONCLUSION 

Space representation and space navigation system of mammals is a complex network of 

special neural detectors located in many brain areas. In the last years several important 

components of the SRS have been discovered. Also, partial understanding of the role of brain 

rhythms in spatial information processing has been obtained. However, the question of how 

spatial cognition is realized in the brain is far from being solved [105].  

The advanced models of the SRS include place cells, grid cells, and head direction cells, 

trying to describe in more detail cell interaction when spatial tasks are solved by animals. The 

problem with the models is that they often rely on radically different and mutually 

contradictable hypotheses. Right now there is no possibility neither to select a single correct 

model nor to combine a unite model that would absorb positive aspects of existing 

approaches.  

The difficulties in understanding the SRS are related to more general problems that are not 

solved in the neurobiology: how objects and events are represented in the brain, how this 

representation changes when the information flows up to the higher levels of processing, how 

long term memory is formed and recalled, how attention and emotions interfere in 

information processing and decision making. The advantage of spatial tasks is that they 

provide us with particular examples of complex cognitive functions that are easier to explore. 

However, if we study goal planning, decision making, and spatial cues recognition, we have 

to extend our observations and modeling to the brain regions outside the hippocampus, EC, 

and subiculum. 

There are more specific problems that should be solved in the near future. First, boundary 

cells should be an object of additional research in order to understand what kind of 

information about the boundary is accumulated by these cells. Second, the lateral EC should 

be studied as a source of non-spatial information for the hippocampus. Third, the role of the 

hippocampal rhythms and their combination should be elucidated in spatial tasks. Fourth, the 

relation and interaction between spatial and non-spatial tasks in the hippocampal activity is 

waiting a solution. Fifth, a definite decision must be made about the circuit and interaction 

principles of grid cells and place cells. Finally, a large scale model of the SRS is needed that 

would unite all the known details about this system construction and functioning. 

Acknowledgment 

The work of IEM was supported by the Russian Foundation for Basic Research (grant 

number 17-44-500312). 

REFERENCES 

1. O’Keefe J., Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence 

from unit activity in the freely-moving rat. Brain Res. 1971. V. 34. P. 171–175. doi: 

10.1016/0006-8993(71)90358-1. 

2. O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp. Neurol. 1976. 

V. 51. P. 78–109. doi: 10.1016/0014-4886(76)90055-8. 

3. O'Keefe J., Nadel L. The hippocampus as a cognitive map. Oxford: Clarendon Press, 

1978. 

4. Tolman E.C. Cognitive maps in rats and men. Psychol. Rev. 1948. V. 55. P. 189–208. 

doi: 10.1037/h0061626. 

5. Hafting T., Fyhn M., Molden S., Moser M.B., Moser E.I. Microstructure of a spatial 

map in the entorhinal cortex. Nature. 2005. V. 436. P. 801–806. doi: 

10.1038/nature03721. 

6. Abbott A. Neuroscience: Brains of Norway. Nature. 2014. V. 514. P. 154–157. doi: 

10.1038/514154a. 

http://dx.doi.org/10.1016/0006-8993%2871%2990358-1
http://dx.doi.org/10.1016/0006-8993%2871%2990358-1
http://dx.doi.org/10.1016/0014-4886%2876%2990055-8
http://psycnet.apa.org/doi/10.1037/h0061626
http://dx.doi.org/10.%201038/nature03721
http://dx.doi.org/10.1038/514154a


HOW ANIMALS FIND THEIR WAY IN SPACE. EXPERIMENTS AND MODELING 

t155 

Mathematical Biology and Bioinformatics. 2018. V. 13. № S. doi: 10.17537/2018.13.t132 

7. Moser E.I., Roudi Y., Witter M.P., Kentros C., Bonhoeffer T., Moser M.B. Grid cells 

and cortical representation. Nat. Rev. Neurosci. 2014. V. 15. P. 466–481. doi: 

10.1038/nrn3766. 

8. Taube J.S., Muller R.U., Ranck J.B. Head-direction cells recorded from the 

postsubiculum in freely moving rats. I. Description and quantitative analysis. 

J. Neurosci. 1990. V. 10. P. 420–435.  

9. Taube J.S., Muller R.U., Ranck J.B. Head-direction cells recorded from the 

postsubiculum in freely moving rats. II. Effects of environmental manipulations. 

J. Neurosci. 1990. V. 10. P. 436–447. 

10. Taube J.S., Burton H.L. Head direction cell activity monitored in a novel environment 

and during a cue conflict situation. J. Neurophysiol. 1995. V. 74. P. 1953–1971. 

11. Taube J.S., Bassett J.P. Persistent neural activity in head direction cells. Cerebral 

Cortex. 2003. V. 13. P. 1162–1172. doi: 10.1093/cercor/bhg102. 

12. Yoganarasimha D., Yu X., Knierim J.J. Head direction cell representations maintain 

internal coherence during conflicting proximal and distal cue rotations: comparison with 

hippocampal place cells. J. Neurosci. 2006. V. 26. P. 622–631. 

13. Solstad T., Boccara C.N., Kropff E., Moser M.B., Moser E.I. Representation of 

geometric borders in the entorhinal cortex. Science. 2008. V. 322. P. 1865–1868. doi: 

10.1126/science.1166466.  

14. Rolls E.T., Stringer S.M. Spatial view cells in the hippocampus, and their idiothetic 

update based on place and head direction. Neural Netw. 2005. V. 18. P. 1229–1241. doi: 

10.1016/j.neunet.2005.08.006. 

15. Eichenbaum H. Time cells in the hippocampus: a new dimension for mapping 

memories. Nat. Rev. Neurosci. 2014. V. 15. P. 732–744. doi: 10.1038/nrn3827. 

16. Kropff E., Carmichael J.E., Moser M.B., Moser E.I. Speed cells in the medial entorhinal 

cortex. Nature. 2015. V. 523. P. 419–424. doi: 10.1038/nature14622. 

17. Ye J., Witter M.P., Moser M.-B., Moser E.I. Entorhinal fast-spiking speed cells project 

to the hippocampus. Proc. Natl. Acad. Sci. (USA). 2018. V. 115. P. E1627–E1636. doi: 

10.1073/pnas.1720855115. 

18. Hoydal O.A., Skytoen E.R., Moser M-B., Moser E.I. Object-vector coding in the medial 

entorhinal cortex. BioRxiv. 2018. doi: 10.1101/286286. 

19. Yartsev M.M., Ulanovsky N. Representation of three-dimensional space in the 

hippocampus of flying bats. Science. 2013. V. 340. P. 367–372. doi: 

10.1126/science.1235338. 

20. Bingman V., Jechura T., Kahn M.C. Behavioral and neural mechanisms of homing and 

migration in birds. In: Animal Spatial Cognition: Comparative, Neural and 

Computational Approaches. Ed. Braun M.F., Cook R.G. 2006. URL: 

http://www.pigeon.psy.tufts.edu/asc/Bingman (accessed 19 September 2018). 

21. Hopfield J.J. Neural networks and physical systems with emergent collective 

computational abilities. PNAS. 1982. V. 79. P. 2554–2558. doi: 

10.1073/pnas.79.8.2554.  

22. Devanand D.P., Pradhaban G., Liu X., Khandji A., De Santi S., Segal S., Rusinek H., 

Pelton G.H., Honig L.S., Mayeux R. et al. Hippocampal and entorhinal atrophy in mild 

cognitive impairment: prediction of Alzheimer disease. Neurology. 2007. V. 68. P. 828–

836. doi: 10.1212/01.wnl.0000256697.20968.d7. 

23. Vinogradova O.S. Hippocampus as comparator: Role of the two input and two output 

systems of the hippocampus in selection and registration of information. Hippocampus. 

2001. V. 11. P. 578–598. doi: 10.1002/hipo.1073.abs. 

24. Damasio A.R. The brain binds entities and events by multiregional activation from 

convergence zones. Neural Comput. 1989. V. 1. P. 123–132. doi: 

10.1162/neco.1989.1.1.123. 

http://www.nature.com/nrn/journal/v15/n7/full/nrn3766.html#auth-2
http://www.nature.com/nrn/journal/v15/n7/full/nrn3766.html#auth-3
http://www.nature.com/nrn/journal/v15/n7/full/nrn3766.html#auth-4
http://www.nature.com/nrn/journal/v15/n7/full/nrn3766.html#auth-5
http://www.nature.com/nrn/journal/v15/n7/full/nrn3766.html#auth-6
http://dx.doi.org/10.1038/nrn3766
http://f1000.com/work/bibliography/5888956
http://f1000.com/work/bibliography/5888956
https://doi.org/10.1093/cercor/bhg102
http://f1000.com/work/bibliography/3756399
http://f1000.com/work/bibliography/3756399
http://f1000.com/work/bibliography/3756399
http://www.sciencemag.org/search?author1=Charlotte+N.+Boccara&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Emilio+Kropff&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=May-Britt+Moser&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Edvard+I.+Moser&sortspec=date&submit=Submit
http://dx.doi.org/10.1126/science.1166466
http://dx.doi.org/10.1016/j.neunet.2005.08.006
http://dx.doi.org/10.1038/nrn3827
https://doi.org/10.1038/nature14622
https://doi.org/10.1073/pnas.1720855115
https://doi.org/10.1101/286286
http://dx.doi.org/10.1126/science.1235338
http://www.pigeon.psy.tufts.edu/asc/Bingman/
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.1212/01.wnl.0000256697.20968.d7
http://dx.doi.org/10.1002/hipo.1073.abs
http://dx.doi.org/10.1162/neco.1989.1.1.123


KAZANOVICH, MYSIN 

t156 

Mathematical Biology and Bioinformatics. 2018. V. 13. № S. doi: 10.17537/2018.13.t132 

25. Buzsáki G., Moser E.I. Memory, navigation and theta rhythm in the hippocampal-

entorhinal system. Nat. Neurosci. 2013. V. 16. P. 130–138. doi: 10.1038/nn.3304. 

26. Eichenbaum H., Cohen N.J. Can we reconcile the declarative memory and spatial 

navigation views on hippocampal function? Neuron. 2014. V. 83. P. 764–770. doi: 

10.1016/j.neuron.2014.07.032. 

27. Witter M.P., Moser E.I. Spatial representation and the architecture of the entorhinal 

cortex. Trends Neurosci. 2006. V. 29. P. 671–678. doi: 10.1016/j.tins.2006.10.003.  

28. Burgalossi A., Brecht M. Cellular, columnar and modular organization of spatial 

representations in medial entorhinal cortex. Curr. Opin. Neurobiol. 2014. V. 24. P. 47–

54. doi: 10.1016/j.conb.2013.08.011.  

29. Ray S., Naumann R., Burgalossi A., Tang Q., Schmidt H., Brecht M. Grid-layout and 

theta-modulation of layer 2 pyramidal neurons in medial entorhinal cortex. Science. 

2014. V. 343. P. 891–896. doi: 10.1126/science.1243028.  

30. Nakazawa K., McHugh T.J., Wilson M.A., Tonegawa S. NMDA receptors, place cells 

and hippocampal spatial memory. Nat. Rev. Neurosci. 2004. V. 5. P. 361–372. doi: 

10.1038/nrn1385.  

31. Wilson M.A., McNaughton B.L. Dynamics of the hippocampal ensemble code for 

space. Science. 1993. V. 261. P. 1055–1058. doi: 10.1126/science.8351520.  

32. Bird C.M., Burgess N. The hippocampus and memory: insights from spatial processing. 

Nat. Rev. Neurosci. 2008. V. 9. P. 182–194. doi: 10.1038/nrn2335.  

33. Foster D.J., Wilson M.A. Reverse replay of behavioural sequences in hippocampal 

place cells during the awake state. Nature. 2006. V. 440. P. 680–683. doi: 

10.1038/nature04587.  

34. Louie K., Wilson M.A. Temporally structured replay of awake hippocampal ensemble 

activity during rapid eye movement sleep. Neuron. 2001. V. 29. P. 145–156. doi: 

10.1016/S0896-6273(01)00186-6.  

35. O’Keefe J., Recce M.L. Phase relationship between hippocampal place units and the 

EEG theta rhythm. Hippocampus. 1993. V. 3. P. 317–330. doi: 

10.1002/hipo.450030307.  

36. Skaggs W.E., McNaughton B.L. Theta phase precession in hippocampal neuronal 

populations and the compression of temporal sequences. Hippocampus. 1996. V. 6. 

P. 149–172. doi: 10.1002/(SICI)1098-1063(1996)6:2%3C149::AID-

HIPO6%3E3.0.CO;2-K. 

37. Sadowski J.H., Jones M.W., Mellor J.R. Ripples make waves: binding structured 

activity and plasticity in hippocampal networks. Neural Plast. 2011. V. 2011. Article ID 

960389. doi: 10.1155/2011/960389. 

38. Borisyuk R., Chik D., Kazanovich Y., da Silva Gomes J. Spiking neural network model 

for memorizing sequences with forward and backward recall. BioSystems. 2013. V. 112. 

P. 214–223. 

39. Fyhn M., Hafting T., Witter M.P., Moser E.I., Moser M.B. Grid cells in mice. 

Hippocampus. 2008. V. 18. P. 1230–1238. doi: 10.1002/hipo.20472.  

40. Yartsev M.M., Witter M.P., Ulanovsky N. Grid cells without theta oscillations in the 

entorhinal cortex of bats. Nature. 2011. V. 479. P. 103–107. doi: 10.1038/nature10583.  

41. Killian N.J., Jutras M.J., Buffalo E.A. A map of visual space in the primate entorhinal 

cortex. Nature. 2012. V. 491. P. 761–764.  

42. Jacobs J., Weidemann C.T., Miller J.F., Solway A., Burke J.F., Wei X.X., Suthana N., 

Sperling M.R., Sharan A.D., Fried I., Kahana M.J. Direct recordings of grid-like 

neuronal activity in human spatial navigation. Nat. Neurosci. 2013. V. 16. P. 1188–

1190. 

http://dx.doi.org/10.1038/nn.3304
http://dx.doi.org/10.1016/j.neuron.2014.07.032
http://dx.doi.org/10.1016/j.tins.2006.10.003
http://dx.doi.org/10.1016/j.conb.2013.08.011
http://www.ncbi.nlm.nih.gov/pubmed/?term=Naumann%20R%5BAuthor%5D&cauthor=true&cauthor_uid=24457213
http://www.ncbi.nlm.nih.gov/pubmed/?term=Burgalossi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24457213
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tang%20Q%5BAuthor%5D&cauthor=true&cauthor_uid=24457213
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schmidt%20H%5BAuthor%5D&cauthor=true&cauthor_uid=24457213
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brecht%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24457213
http://dx.doi.org/10.1126/science.1243028
http://www.ncbi.nlm.nih.gov/pubmed/?term=McHugh%20TJ%5BAuthor%5D&cauthor=true&cauthor_uid=15100719
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wilson%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=15100719
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tonegawa%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15100719
http://dx.doi.org/10.1038/nrn1385
http://dx.doi.org/10.1126/science.8351520
http://dx.doi.org/10.1038/nrn2335
http://dx.doi.org/10.1038/nature04587
http://dx.doi.org/10.1016/S0896-6273(01)00186-6
http://dx.doi.org/10.1002/hipo.450030307
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:2%3C149::AID-HIPO6%3E3.0.CO;2-K
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:2%3C149::AID-HIPO6%3E3.0.CO;2-K
http://dx.doi.org/10.1155/2011/960389
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hafting%20T%5BAuthor%5D&cauthor=true&cauthor_uid=18683845
http://www.ncbi.nlm.nih.gov/pubmed/?term=Witter%20MP%5BAuthor%5D&cauthor=true&cauthor_uid=18683845
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moser%20EI%5BAuthor%5D&cauthor=true&cauthor_uid=18683845
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moser%20MB%5BAuthor%5D&cauthor=true&cauthor_uid=18683845
http://dx.doi.org/10.1002/hipo.20472
http://dx.doi.org/10.1038/nature10583
http://www.ncbi.nlm.nih.gov/pubmed/?term=Weidemann%20CT%5BAuthor%5D&cauthor=true&cauthor_uid=23912946
http://www.ncbi.nlm.nih.gov/pubmed/?term=Miller%20JF%5BAuthor%5D&cauthor=true&cauthor_uid=23912946
http://www.ncbi.nlm.nih.gov/pubmed/?term=Solway%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23912946
http://www.ncbi.nlm.nih.gov/pubmed/?term=Burke%20JF%5BAuthor%5D&cauthor=true&cauthor_uid=23912946
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wei%20XX%5BAuthor%5D&cauthor=true&cauthor_uid=23912946
http://www.ncbi.nlm.nih.gov/pubmed/?term=Suthana%20N%5BAuthor%5D&cauthor=true&cauthor_uid=23912946
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sperling%20MR%5BAuthor%5D&cauthor=true&cauthor_uid=23912946
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sharan%20AD%5BAuthor%5D&cauthor=true&cauthor_uid=23912946
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fried%20I%5BAuthor%5D&cauthor=true&cauthor_uid=23912946
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kahana%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=23912946


HOW ANIMALS FIND THEIR WAY IN SPACE. EXPERIMENTS AND MODELING 

t157 

Mathematical Biology and Bioinformatics. 2018. V. 13. № S. doi: 10.17537/2018.13.t132 

43. Sargolini F., Fyhn M., Hafting T., McNaughton B.L., Witter M.P., Moser M-B., Moser 

E.I. Conjunctive representation of position, direction, and velocity in entorhinal cortex. 

Science. 2006. V. 312. P. 758–762. 

44. Zhang S.J., Ye J., Miao C., Tsao A., Cerniauskas I., Ledergerber D., Moser M.B., 

Moser E.I. Optogenetic dissection of entorhinal-hippocampal functional connectivity. 

Science. 2013. V. 340. P. 1232627. 

45. Diehl G.W., Hon O.J., Leutgeb S., Leutgeb J.K. Grid and nongrid cells in medial 

entorhinal cortex represent spatial location and environmental features with 

complementary coding schemes. Neuron. 2017. V. 94. P. 83–92. 

46. Boccara C.N., Sargolini F., Thoresen V.H., Solstad T., Witter M.P., Moser E.I., Moser 

M.B. Grid cells in pre- and parasubiculum. Nat. Neurosci. 2010. V. 13. P. 987–994. 

47. Rowland D.C. Functional properties of stellate cells in medial entorhinal cortex layer II. 

eLife. 2018. V. 7. P. e36664. 

48. Brun V.H., Solstad T., Kjelstrup K.B., Fyhn M., Witter M.P., Moser E.I., Moser M.B. 

Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex. 

Hippocampus. 2008. V. 18. P. 1200–1212. 

49. Stensola H., Stensola T., Solstad T., Frøland K., Moser M.B., Moser E.I. The entorhinal 

grid map is discretized. Nature. 2012. V. 492. P. 72–78. 

50. Heys J.G., Rangarajan K.V., Dombeck D.A. The functional micro-organization of grid 

cells revealed by cellular-resolution imaging neuron. Neuron. 2014. V. 84. P. 1079–

1090. 

51. Krupic J. Bauza M., Burton S., O'Keefe J. Local transformations of the hippocampal 

cognitive map. Science. 2018. V. 359. P. 1143–1146. 

52. Buzsáki G. Theta oscillations in the hippocampus. Neuron. 2002. V. 33. P. 325–340. 

53. Vinogradova O.S. Expression, control, and probable functional significance of the 

neuronal theta-rhythm. Prog. Neurobiol. 1995. V. 45. P. 523–583. 

54. Gonzalez-Sulser A., Parthier D., Candela A., McClure Ch., Pastoll H., Garden D., 

Sürmeli G., Nolan M.F. GABAergic projections from the medial septum selectively 

inhibit interneurons in the medial entorhinal cortex. J. Neurosci. 2014. V. 34. P. 16739–

16743. doi: 10.1523/JNEUROSCI.1612-14.2014. 

55. Gonzalez-Sulser A., Nolan M.F. Grid cells’ need for speed. Nat. Neurosci. 2016. V. 20. 

P. 1–2. 

56. Hayman R., Burgess N. Disrupting the grid cells’ need for speed. Neuron. 2016. V. 91. 

P. 502–503. 

57. Justus D., Dalügge D., Bothe S., Fuhrmann F., Hannes C., Kaneko H., Friedrichs D., 

Sosulina L., Schwarz I., Elliott D.A., Schoch S., Bradke F., Schwarz M.K., Remy S. 

Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections. 

Nat. Neurosci. 2017. V. 20. P. 16–19. doi: 10.1038/nn.4447 

58. Robinson J., Manseau F., Ducharme G., Amilhon B., Vigneault E., El Mestikawy S., 

Williams S. Optogenetic activation of septal glutamatergic neurons drive hippocampal 

theta rhythms. J. Neurosci. 2016. V. 36. P. 3016–3023. doi: 

10.1523/JNEUROSCI.2141-15.2016. 

59. Ledberg A., Robbe D. Locomotion-related oscillatory body movements at 6–12 Hz 

modulate the hippocampal theta rhythm. PLoS ONE. 2011. V. 6. P. e27575. 

60. Hinman J.R., Penley S.C., Long L.L., Escabí M.A., Chrobak J.J. Septotemporal 

variation in dynamics of theta: speed and habituation. J. Neurophysiol. 2011. V. 10. 

P. 2675–2686. 

61. Jeewajee A., Barry C., Douchamps V., Manson D., Lever C., Burgess N. Theta phase 

precession of grid and place cell firing in open environments. Philos. Trans. R. Soc. 

Lond. B Biol. Sci. 2015. V. 369. P. 20120532. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Fyhn%20M%5BAuthor%5D&cauthor=true&cauthor_uid=16675704
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hafting%20T%5BAuthor%5D&cauthor=true&cauthor_uid=16675704
http://www.ncbi.nlm.nih.gov/pubmed/?term=McNaughton%20BL%5BAuthor%5D&cauthor=true&cauthor_uid=16675704
http://www.ncbi.nlm.nih.gov/pubmed/?term=Witter%20MP%5BAuthor%5D&cauthor=true&cauthor_uid=16675704
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moser%20MB%5BAuthor%5D&cauthor=true&cauthor_uid=16675704
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moser%20EI%5BAuthor%5D&cauthor=true&cauthor_uid=16675704
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moser%20EI%5BAuthor%5D&cauthor=true&cauthor_uid=16675704
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ye%20J%5BAuthor%5D&cauthor=true&cauthor_uid=23559255
http://www.ncbi.nlm.nih.gov/pubmed/?term=Miao%20C%5BAuthor%5D&cauthor=true&cauthor_uid=23559255
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tsao%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23559255
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cerniauskas%20I%5BAuthor%5D&cauthor=true&cauthor_uid=23559255
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ledergerber%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23559255
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moser%20MB%5BAuthor%5D&cauthor=true&cauthor_uid=23559255
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moser%20EI%5BAuthor%5D&cauthor=true&cauthor_uid=23559255
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sargolini%20F%5BAuthor%5D&cauthor=true&cauthor_uid=20657591
http://www.ncbi.nlm.nih.gov/pubmed/?term=Thoresen%20VH%5BAuthor%5D&cauthor=true&cauthor_uid=20657591
http://www.ncbi.nlm.nih.gov/pubmed/?term=Solstad%20T%5BAuthor%5D&cauthor=true&cauthor_uid=20657591
http://www.ncbi.nlm.nih.gov/pubmed/?term=Witter%20MP%5BAuthor%5D&cauthor=true&cauthor_uid=20657591
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moser%20EI%5BAuthor%5D&cauthor=true&cauthor_uid=20657591
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moser%20MB%5BAuthor%5D&cauthor=true&cauthor_uid=20657591
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moser%20MB%5BAuthor%5D&cauthor=true&cauthor_uid=20657591
http://www.ncbi.nlm.nih.gov/pubmed/?term=Solstad%20T%5BAuthor%5D&cauthor=true&cauthor_uid=19021257
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kjelstrup%20KB%5BAuthor%5D&cauthor=true&cauthor_uid=19021257
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fyhn%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19021257
http://www.ncbi.nlm.nih.gov/pubmed/?term=Witter%20MP%5BAuthor%5D&cauthor=true&cauthor_uid=19021257
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moser%20EI%5BAuthor%5D&cauthor=true&cauthor_uid=19021257
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moser%20MB%5BAuthor%5D&cauthor=true&cauthor_uid=19021257
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stensola%20T%5BAuthor%5D&cauthor=true&cauthor_uid=23222610
http://www.ncbi.nlm.nih.gov/pubmed/?term=Solstad%20T%5BAuthor%5D&cauthor=true&cauthor_uid=23222610
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fr%C3%B8land%20K%5BAuthor%5D&cauthor=true&cauthor_uid=23222610
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moser%20MB%5BAuthor%5D&cauthor=true&cauthor_uid=23222610
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moser%20EI%5BAuthor%5D&cauthor=true&cauthor_uid=23222610
http://f1000.com/work/bibliography/5725324
http://f1000.com/work/bibliography/5725324
https://doi.org/10.1523/JNEUROSCI.1612-14.2014
http://f1000.com/work/bibliography/5888959
http://f1000.com/work/bibliography/5888959
http://f1000.com/work/bibliography/5845429
http://f1000.com/work/bibliography/5845429
https://doi.org/10.1038/nn.4447
http://f1000.com/work/bibliography/2837123
http://f1000.com/work/bibliography/2837123
http://f1000.com/work/bibliography/2837123
https://doi.org/10.1523/JNEUROSCI.2141-15.2016
http://f1000.com/work/bibliography/4153285
http://f1000.com/work/bibliography/4153285
http://f1000.com/work/bibliography/4047186
http://f1000.com/work/bibliography/4047186
http://f1000.com/work/bibliography/4047186


KAZANOVICH, MYSIN 

t158 

Mathematical Biology and Bioinformatics. 2018. V. 13. № S. doi: 10.17537/2018.13.t132 

62. Brandon M.P., Bogaard A.R., Libby C.P., Connerney M.A., Gupta K., Hasselmo M.E. 

Reduction of theta rhythm dissociates grid cell spatial periodicity from directional 

tuning. Science. 2011. V. 332. P. 595–599. 

63. Newman E.L., Climer J.R., Hasselmo M.E. Grid cell spatial tuning reduced following 

systemic muscarinic receptor blockade. Hippocampus. 2014. V. 24. P. 643–655. 

64. Wills T.J., Cacucci F. The development of the hippocampal neural representation of 

space. Curr. Opin. Neurobiol. 2014. V. 24. P. 111–119. 

65. Bonnevie T., Dunn B., Fyhn M., Hafting T., Derdikman D., Kubie J.L., Roudi Y., 

Moser E.I., Moser M.B. Grid cells require excitatory drive from the hippocampus. Nat. 

Neurosci. 2013. V. 16. P. 309–317. 

66. Schlesiger M.I., Boublil B.L., Hales J.B., Leutgeb J.K., Leutgeb S. Hippocampal global 

remapping can occur without input from the medial entorhinal cortex. Cell Rep. 2018. 

V. 22. P. 3152–3159. 

67. Deshmukh S.S., Knierim J.J. Representation of non-spatial and spatial information in 

the lateral entorhinal cortex. Front. Behav. Neurosci. 2011. V. 5. P. 69. 

68. Jacob P.-Y., Casali1 G., Spieser L., Page H., Overington D., Jeffery K. An independent, 

landmark-dominated head direction signal in dysgranular retrosplenial cortex. Nat. 

Neurosci. 2017. V. 20. P. 173–175. 

69. Sharp P.E., Blair H.T., Cho J. The anatomical and computational basis of the rat head-

direction cell signal. Trends Neurosci. 2001. V. 24. P. 289–294. 

70. Taube J. Head direction cells. Scholarpedia. URL: 

http://www.scholarpedia.org/article/Head_direction_cells (accessed 19 September 

2018). 

71. Manns J.R., Howard M., Eichenbaum H. Gradual changes in hippocampal activity 

support remembering the order of events. Neuron. 2007. V. 56. P. 530–540. 

72. Pastalkova E., Itskov V., Amarasingham A., Buzsáki G. Internally generated cell 

assembly sequences in the rat hippocampus. Science. 2008. V. 321. P. 1322–1327. 

73. Kraus B.J., Robinson R.J., White J.A., Eichenbaum H., Hasselmo M.E. Hippocampal 

‘time cells’: time versus path integration. Neuron. 2013. V. 78. P.1090–1101. 

74. D’Hooge R., De Deyn P.P. Applications of the Morris water maze in the study of 

learning and memory. Brain Res. Rev. 2001. V. 36. P. 60–90. 

75. Krichmar J.L., Seth A.K., Nitz D.A., Fleischer J.G., Edelman G.M. Spatial navigation 

and causal analysis in a brain-based device modeling cortical-hippocampal interactions. 

Neuroinformatics. 2005. V. 3. P. 197–222. 

76. Ponulak F., Hopfield J.J. Rapid, parallel path planning by propagating wavefronts of 

spiking neural activity. Front. Comput. Neurosci. 2013. V. 7. Article № e98. 

77. Han V.Z., Grant K., Bell C.C. Reversible associative depression and nonassociative 

potentiation at a parallel fiber synapse. Neuron 2000. V. 27. P. 611–622.  

78. Roberts P.D., Leen T.K. Anti-hebbian spike-timing-dependent plasticity and adaptive 

sensory processing. Front. Comput. Neurosci. 2010. V. 4. P. 1–11. 

79. Miller J.F., Neufang M., Solway A., Brandt A., Trippel M., Mader I., Hefft S., 

Merkow M., Polyn S.M., Jacobs J., Kahana M.J., Schulze-Bonhage A. Neural activity 

in human hippocampal formation reveals the spatial context of retrieved memories. 

Science. 2013. V. 342. P. 1111–1114. 

80. Burak Y. Spatial coding and attractor dynamics of grid cells in the entorhinal cortex. 

Curr. Opin. Neurobiol. 2014. V. 25. P. 169–175. 

81. Grossberg S., Pilly P.K. Coordinated learning of grid cell and place cell spatial and 

temporal properties: multiple scales, attention and oscillations. Philos. Trans. R. Soc. 

Lond. B Biol. Sci. 2014. V. 369. P. 20120524. 

82. Burgess N. Grid cells and theta as oscillatory interference: Theory and predictions. 

Hippocampus. 2008. V. 18. P. 1157–1174. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Bogaard%20AR%5BAuthor%5D&cauthor=true&cauthor_uid=21527714
http://www.ncbi.nlm.nih.gov/pubmed/?term=Libby%20CP%5BAuthor%5D&cauthor=true&cauthor_uid=21527714
http://www.ncbi.nlm.nih.gov/pubmed/?term=Connerney%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=21527714
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gupta%20K%5BAuthor%5D&cauthor=true&cauthor_uid=21527714
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hasselmo%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=21527714
http://f1000.com/work/bibliography/5550265
http://f1000.com/work/bibliography/5550265
http://f1000.com/work/bibliography/5550265
http://f1000.com/work/bibliography/1456873
http://f1000.com/work/bibliography/1456873
http://www.scholarpedia.org/article/Head_direction_cells
http://www.sciencemag.org/search?author1=Markus+Neufang&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Alec+Solway&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Armin+Brandt&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Michael+Trippel&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Irina+Mader&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Stefan+Hefft&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Max+Merkow&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Sean+M.+Polyn&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Joshua+Jacobs&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Michael+J.+Kahana&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Andreas+Schulze-Bonhage&sortspec=date&submit=Submit


HOW ANIMALS FIND THEIR WAY IN SPACE. EXPERIMENTS AND MODELING 

t159 

Mathematical Biology and Bioinformatics. 2018. V. 13. № S. doi: 10.17537/2018.13.t132 

83. Burgess C.P., Burgess N. Controlling phase noise in oscillatory interference models of 

grid cell firing. J. Neurosci. 2014. V. 34. P. 6224–6232. 

84. Burgess N., Barry C., O’Keefe J. An oscillatory interference model of grid cell firing. 

Hippocampus. 2007. V. 17. P. 801–812. 

85. Bush D., Burgess N. A hybrid oscillatory interference/continuous attractor network 

model of grid cell firing. J. Neurosci. 2014. V. 34. P. 5065–5079. 

86. Pilly P.K., Grossberg S. How do spatial learning and memory occur in the brain? 

Coordinated learning of entorhinal grid cells and hippocampal place cells. J. Cogn. 

Neurosci. 2012. V. 24. P. 1031–1054. 

87. Burak Y., Fiete I.R. Accurate path integration in continuous attractor network models of 

grid cells. PLoS Comput. Biol. 2009. V. 5. Article № e1000291. 

88. Fuhs M.C. A spin glass model of path integration in rat medial entorhinal cortex. J. 

Neurosci. 2006. V. 26. P. 4266–4276. 

89. Si B., Treves A. A model for the differentiation between grid and conjunctive units in 

medial entorhinal cortex. Hippocampus. 2013. V. 23. P. 1410–1424. 

90. Si B., Kropff E., Treves A. Grid alignment in entorhinal cortex. Biol. Cybern. 2012. 

V. 106. P. 483–506. 

91. McNaughton B.L., Battaglia F.P., Jensen O., Moser E.I., Moser M.B. Path integration 

and the neural basis of the "cognitive map". Nat. Rev. Neurosci. 2006. V. 7. P. 663–678. 

92. Navratilova Z., Giocomo L.M., Fellous J.M., Hasselmo M.E., McNaughton B.L. Phase 

precession and variable spatial scaling in a periodic attractor map model of medial 

entorhinal grid cells with realistic after-spike dynamics. Hippocampus. 2012. V. 22. 

P. 772–789. 

93. Widloski J., Fiete I.R. A model of grid cell development through spatial exploration and 

spike time-dependent plasticity. Neuron. 2014. V. 83. P. 481–495. 

94. Waniek N. Hexagonal grid fields optimally encode transitions in spatiotemporal 

sequences. Neural Comput. 2018. V. 30. P. 2691–2725. 

95. Banino A., Barry C., Uria B., Blundell Ch., Lillicrap T., Mirowski P., Pritzel A., 

Chadwick M.J., Degris T., Modayil J. et al. Vector-based navigation using grid-like 

representations in artificial agents. Nature. 2018. V. 557. P. 429–433. 

96. Solstad T., Moser E.I., Einevoll G.T. From grid cells to place cells: A mathematical 

model. Hippocampus. 2006. V. 16. P. 1026–1031. 

97. Giocomo L.M., Moser M.B., Moser E.I. Computational models of grid cells. Neuron. 

2011. V. 71. P. 589–603. 

98. Rennó-Costa C., Tort A.B.L. Place and grid cells in a loop: implications for memory 

function and spatial coding. J. Neurosci. 2017. V. 37. P. 8062–8076. doi: 

10.1523/JNEUROSCI.3490-16.2017  

99. Weber S.N., Sprekeler H. Learning place cells, grid cells and invariances with 

excitatory and inhibitory plasticity. eLife. 2018. V. 7. P. e34560. doi: 

10.7554/eLife.34560  

100. Rowland D.C., Roudi Y., Moser M.B., Moser E.I. Ten years of grid cells. Ann. Rev. 

Neurosci. 2016. V. 39. P. 19–40. 

101. Dombeck D.A., Harvey C.D., Tian L., Looger L.L., Tank D.W. Functional imaging of 

hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 

2010. V. 13. P. 1433–1440. 

102. Bonansco C., Fuenzalida M. Plasticity of Hippocampal Excitatory-Inhibitory Balance: 

Missing the Synaptic Control in the Epileptic Brain. Neural Plast. 2016. V. 2016. 

P. 8607038. 

103. Turing A.M. The chemical basis of morphogenesis. 1952. Philosophical Transactions 

of the Royal Society of London. Series B, Biological Sciences. V. 237. № 641. P. 37–72. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Battaglia%20FP%5BAuthor%5D&cauthor=true&cauthor_uid=16858394
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jensen%20O%5BAuthor%5D&cauthor=true&cauthor_uid=16858394
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moser%20EI%5BAuthor%5D&cauthor=true&cauthor_uid=16858394
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moser%20MB%5BAuthor%5D&cauthor=true&cauthor_uid=16858394
http://www.ncbi.nlm.nih.gov/pubmed/?term=Giocomo%20LM%5BAuthor%5D&cauthor=true&cauthor_uid=21484936
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fellous%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=21484936
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hasselmo%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=21484936
http://www.ncbi.nlm.nih.gov/pubmed/?term=McNaughton%20BL%5BAuthor%5D&cauthor=true&cauthor_uid=21484936
http://f1000.com/work/bibliography/5725319
http://f1000.com/work/bibliography/5725319
http://f1000.com/work/bibliography/5230304
http://f1000.com/work/bibliography/5230304
http://f1000.com/work/bibliography/5230304
https://doi.org/10.1523/JNEUROSCI.3490-16.2017
https://doi.org/10.7554/eLife.34560


KAZANOVICH, MYSIN 

t160 

Mathematical Biology and Bioinformatics. 2018. V. 13. № S. doi: 10.17537/2018.13.t132 

104. Domínguez U.R., Caplan J.B. A hexagonal Fourier model of grid cells. Hippocampus. 

2018. doi: 10.1002/hipo.23028. 

105. Grieves R.M., Jeffery K.J. The representation of space in the brain. Behavioural 

Processes. 2017. V. 135. P. 113–131. 
 

 

 

Received 23.11.2018, published 30.11.2018. 

https://doi.org/10.1002/hipo.23028

