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Abstract. Advances in the methodology of the X-ray diffraction experiments leads 

to a possibility to register the rays scattered by large isolated biological particles 

(viruses and individual cells) but not only by crystalline samples. The experiment 

with an isolated particle provides researchers with the intensities of the scattered 

rays for the continuous spectrum of scattering vectors. Such experiment gives 

much more experimental data than an experiment with a crystalline sample where 

the information is limited to a set of Bragg reflections. This opens up additional 

opportunities in solving underlying problem of X-ray crystallography, namely, 

calculating phase values for the scattered waves needed to restore the structure of 

the object under study. In practice, the original continuous diffraction pattern is 

sampled, reduced to the values at grid points in the space of scattering vectors (in 

the reciprocal space). The sampling step determines the amount of the information 

involved in solving the phase problem and the complexity of the necessary 

calculations. In this paper, we investigate the effect of the sampling step on the 

accuracy of the phase problem solution obtained by the method proposed earlier by 

the authors. It is shown that an expected improvement of the accuracy of the 

solution with the reducing the sampling step continues even after crossing the 

'Nyquist limit' defined as the inverse of the double size of the object under study.  
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1. X-RAY DIFFRACTION BY CRYSTALS AND SINGLE PARTICLES 

1.1. X-ray diffraction experiment 

The goal of the first stage of solving the structure of a biological object by X-ray 

diffraction is to determine the function that describes the distribution of scattering electrons in 

the sample being studied. After determining this function, at least approximately, its 

interpretation results in a preliminary atomic model of the object. At the last stage of the 

structure determination, the parameters of the model are refined to minimize the discrepancy 

between the experimental data and the theoretical scattering pattern corresponding to the 

model. 
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Fig. 1. Left: the scheme of an X-ray diffraction experiment. Right: The dependence of the intensity of 

reflections on resolution. For thin resolution shells in the reciprocal space, the mean intensity versus 

squared shell radius s2 = (2sin/)2 is shown. The plot corresponds to the test object PS-I in c1 cell (see 

Sec. 3).  

 

The scheme of an X-ray diffraction experiment is shown in Figure 1. In this experiment, 

the sample is placed on the path of a primary X-ray wave with the wavelength   and the 

direction 0σ . A detector measures the intensity of secondary waves specified by directions σ . 

The secondary waves are the result of a superposition of spherical waves (of the same 

wavelength  ) emitted by oscillating electrons excited by the primary wave. The complex 

amplitude E of a secondary wave differs from the amplitude 0E  of a primary wave by two 

principal factors: 

( ) 0EsFE = .                                                                   (1) 

The factor   does not depend on the atomic structure of the object and is defined mostly by 

the part of the primary wave energy flow that comes with the wave scattered by one electron 

in the direction σ . This part is extremely small (the factor   in (1) can be as small as 10–12), 

which creates the main difficulty to register the scattered radiation. The complex factor ( )sF , 

which is named the structure factor, depends on the distribution of electrons ( )r  in the object 

and experimental conditions (the direction of the primary and secondary waves and the 

wavelength). In the absence of anomalous scattering, these quantities are related by the 

equations: 

( ) ( ) ( )  ( ) ( )  ==
3

,2expexp

R

rrsrsssF dViiF ,                                  (2) 



−
= 0σσ

s .                                                                    (3) 
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The quantities ( )sF  and ( )s  are called the magnitude and the phase of the structure factor, 

and s  is the scattering vector. 

Experimentally measured secondary wave intensity is proportional to the square of the 

structure factor magnitude with the coefficient C , which is common for all structure factors  

( ) ( )ss
2CFI = .                                                                 (4) 

An X-ray diffraction experiment allows one to obtain the structure factor magnitudes. At the 

same time, the phase values cannot be measured in the standard X-ray diffraction experiment. 

The retrieval of the phase values is the central problem of the X-ray structure analysis, the so-

called phase problem. 

1.2. Scattering by a crystalline sample 

The use of a crystalline sample in an X-ray diffraction experiment has a dual effect on the 

scattering pattern. On the one hand, for a discrete subset of scattering vectors, the waves 

scattered by different copies of the object come to the detector with the same phase, which 

leads to a multiple increase in the intensity of the secondary wave so that the intensity 

becomes measurable. These waves are called Bragg reflections. For other scattering vectors, 

the waves from different object copies come with chaotic phase shifts leading to their mutual 

annihilation. A very low intensity of these waves, in practice, cannot be measured.  

For a crystalline sample, the electron density distribution is a periodic function, and can be 

represented as a Fourier series: 

( ) ( ) ( ) 


−=
s

rssF
V

r ,2exp
1

i
cell

.                                        (5) 

The summation here is over all nodes of the integer lattice 

 , , , integersh k l h k l   = + + −a b c  in the scattering vector space (reciprocal space lattice). 

This lattice is built on the basis of vectors  
cba ,, , which form the conjugate basis to the 

basis  cba ,,  of a crystal unit cell. Vectors  cba ,,  are linearly independent periods of the 

function ( )r . They are usually selected so that the volume of the unit cell (a parallelepiped 

based on these vectors) is minimal possible. 

Bragg reflection appears if the scattering vector belongs to the reciprocal space lattice 

s  (the Bragg-Laue-Wulff condition). The corresponding structure factors can be 

represented as 

( ) ( ) ( )  ( ) ( )  ==

cell

dViNiF
V

rrsrsssF ,2expexp ,                               (6) 

where N  is a factor common to all Bragg reflections. It is proportional to the number of 

copies of the object in the crystal and enhances many times the magnitude of the secondary 

wave. The problem of the retrieval of the distribution ( )r  may be reformulated as the 

problem of the determination of the phase values necessary to calculate the distribution (5). 

In crystal studies, an X-ray experiment provides one with only half of the information 

needed to reconstruct the electron density distribution by formula (5), i.e. the structure factor 

magnitudes for scattering vectors s . The restoration of the missing half of the 

information, i.e. the structure factors phases, requires additional information. Usually, it 

comes from complementary experiments carried out in modified conditions or from the 

general properties of the object. 

The need to use crystalline samples in the experiment is caused by the fact that the 

secondary waves scattered by only one copy of the object are too weak to be experimentally 

measured. Until recently, the experimental equipment did not allow one to register the 
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scattering of isolated biological molecules. However, the development of new powerful 

impulse radiation sources, X-ray free electron lasers (XFEL), and the progress in detector 

technology give grounds to expect that this difficulty will be overcome. The first experimental 

data sets obtained in diffraction experiments with individual biological particles (viruses and 

whole cells) have been already announced [1-6]. Although being of fairly low resolution and 

limited to a few two-dimensional frames, they give promise to obtain three-dimensional 

diffraction data sets in the near future. Note that we are talking about three-dimensional data 

sets recorded for individual particles and not one-dimensional scattering curves obtained 

using the method of small-angle X-ray scattering [7] when the recorded data are the result of 

the averaging over a large number of particles oriented in different ways. 

One more problem complicating the calculation of the electron density distribution is that 

the summation in the formula (5) is over an infinite series, while the experiment allows one to 

measure only a finite set of structure factor magnitudes. The number of magnitudes obtained 

experimentally depends primarily on the quality of the crystal. It is usually characterized by 

the resolution 
mind  calculated as maxmin 1 sd = , where maxs  is the maximal length of scattering 

vectors for the terms of series (5) included into the summation. Geometrically, the value 
mind  

is equal to the minimum length of the period for the Fourier harmonics ( ) rs,2exp i  

included in the calculation of (5), and defines the minimal size of visually distinct details on 

the corresponding contour maps. The partial sums of the Fourier series (5) are called in 

crystallography the Fourier synthesis of electron density. A theoretical limit of the resolution 

of this sum is restricted by 2 , where   is the wavelength used in the experiment. For 

wavelengths close to 1.0 Å, a value commonly used for current experiments in synchrotrons, 

this limit approaches 0.5 Å. However, for the majority of structures deposited in the bank of 

protein structures PDB [8], the experiments have allowed collecting a set of data only with a 

resolution of about 2 Å. This is explained by the difficulties in obtaining high quality crystals 

of biological macromolecules. 

The concept of the resolution is used to characterize not only the whole set of structural 

factors involved in the calculation of the Fourier synthesis but also individual structure 

factors; in the latter case, it is defined as sd 1= . Note that the length of the scattering vector 

s  is related to the scattering angle as = sin2s . Therefore, high-resolution structure 

factors (low d  values, high s  values) correspond to the scattering at large angles. 

Conversely, low-resolution data (high d  values, low s  values) are referred to as small-angle 

scattering. When working with large biological objects, it is common practice to raise 

gradually the resolution of the data set used in the calculation. In this paper we restrict 

ourselves to the discussion of the first phase of the study, i.e. imaging a macromolecular 

object at a resolution of about 25 Å, which allows us to determine the shape of the 

macromolecular complex and that of the domains or molecules it consists of. 

1.3. Single particle scattering 

Theoretically, an X-ray diffraction experiment with an isolated particle allows measuring 

the moduli of the Fourier transform of the electron density distribution in the individual 

particle 

( ) ( ) ( )  =
3

,2exp

R

rrsrs dViF spsp                                               (7) 

for any value of the scattering vector s  within the resolution limit 21 s , and not only for 

a discrete set   of Bragg vectors, as in the case of a crystalline sample. Thus, the experiment 

with isolated particles can give a significantly larger amount of information than the 
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experiment with crystal samples and thereby greatly facilitate the solution of the phase 

problem. 

The finite dimensions of the particle allow one to reduce the problem of the retrieval of 

the electron density distribution ( )rsp  to a standard crystallographic problem [9]. Let us 

consider an imaginary crystal with a sufficiently large unit cell containing the particle under 

study. Let’s denote the basis of this cell by  cba ,,  and the conjugate basis (the basis of the 

reciprocal space) by  
cba ,,  and introduce the periodic function ( )rcryst  coinciding with 

( )rsp  inside the unit cell and extended to the whole space with the periods  cba ,, . The 

electron density distribution ( )rcryst  is completely determined by a set of the structure factors 

with the scattering vectors s  belonging to the reciprocal space lattice abc  built on the 

conjugate basis vectors  
cba ,, . The values of the corresponding structure factors 

( ) ( ) ( )  ( ) ( )  ( )sFrsrrsrsF

R

r

V

r

abc

spspcrystcryst dVidVi === 
3

,2exp,2exp             (8) 

coincide with the values of the Fourier transform (7) of the single particle distribution taken 

for the same vectors s . Therefore, reducing the set of available Fourier transform magnitudes 

to a discrete grid abc  ( ) abcss ;spF , we come to the problem of reconstructing the 

imaginary crystal density distribution ( )rcryst  from the magnitudes of its structure factors. 

Formally speaking, we are faced with the same problem as before: the experiment gives only 

a half of the information necessary to calculate the density distribution ( )rcryst  by formula 

(5). However, a significant difference is that, now, choosing a sufficiently large cell, we have 

the task of retrieval of the function that is equal to zero for the most part of the unit cell. 

(Although it remains unknown, for which particular points in the cell this function is equal to 

zero.) In crystallographic terms, this can be formulated as the presence of a large amount of 

solvent in the unit cell. These results in the redundancy of the experimental data relative to the 

number of values to be identified [10]. This property is widely used in crystallographic 

practice for the refinement of phase values. Clearly, the choice of the imaginary unit cell is 

rather arbitrary, and changing the unit cell parameters, we change the amount of experimental 

data involved in the work within the resolution zone used.  

The redundancy of experimental data due to the presence of a large "void volume" in the 

unit cell has been used for decades to solve the phase problem in biological crystallography 

and optics; the basic methods are iterative procedures such as solvent flattening, density 

modification, and hybrid input-output algorithm [11-13]. Recently, we have proposed an 

alternative approach based on procedures of random search strengthened by restrictions of 

connectivity and binarity of the particle region [14-15]. 

Theoretically, increasing the size of the unit cell of an imaginary crystal provides an 

unlimited increase in the experimental information used to find the phases. However, in 

practice we face with certain restrictions. First, the minimal size of the reciprocal lattice grid 

is limited by the technical characteristics of the detector (e.g., the size of the detector pixel). 

Second, an increase in the number of structure factors involved in the work results in a 

significant increase in the complexity of calculations and places high requirements on the 

computing resources. Finally, the potential redundancy of data can indeed be helpful up to 

some resolution limit while its use cannot be extended to a higher resolution. The aim of this 

work was to study the dependence of the quality of the solution of the phase problem on the 

size of the unit cell of an auxiliary imaginary crystal. 
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2. THE USE OF CONNECTED MASKS IN SOLUTION OF THE PHASE 

PROBLEM IN MACROMOLECULAR CRYSTALLOGRAPHY 

Our method of solving the phase problem is described in [14-15]. Briefly, it can be 

summarized as follows. A grid is introduced into the unit cell of an imaginary crystal, and the 

number of grid points inside the particle is estimated from the particle volume. At the first 

stage of the work, a large number of finite connected sets of grid points (masks) of a preset 

size are generated randomly. The connectivity of a set of grid points is determined on the 

basis of some neighbouring rules. In our tests, for every grid point six adjacent grid points 

were considered as its neighbours. To every generated mask, a binary characteristic function 

of this set is defined and its structure factors magnitudes and phases are calculated. When 

these calculated magnitudes are close to the experimental ones, the set of calculated phases is 

considered as 'admissible' and stored for further use. The generation continues until the 

assigned number of admissible phase sets accumulates (100 in our tests). At the next step, the 

phase sets stored are aligned by applying the shift of the origin and/or changing the 

enantiomer to make the corresponding Fourier syntheses as close as possible. The aligned 

phases and the experimental magnitudes are averaged, and the phase set obtained is 

considered to be the result of the first stage of the solution of the phase problem [14].  

The non-centred correlation coefficient: 

 
( ) ( )

( ) ( ) 



 

=

Ss Ss

Ss

ss

ss

22
minmax ,

exactcalc

exactcalc

FF

FF

ddCM .                                       (9) 

was used as the criterion of closeness of structure factor magnitudes calculated from the mask 

to the experimental ones. The summation in (9) is performed over scattering vectors 

 minmax 11: dsd = sSs . 

At the first stage, each mask is constructed stepwise, starting with a randomly selected 

point. At each step, a new point is added to the mask; it is selected with the equal probability 

from the boundary points of the already constructed part of the mask. 

The second stage (iterative phase refinement) differs from the fist one by two features 

[15]. First, as before, the mask is build starting from a random point, but the choice of the 

point to be added to the mask is performed from the boundary points in accordance with some 

prior probability distribution ( )rpriorP . In our tests, the prior distribution was built on the basis 

of Fourier synthesis ( )r  calculated using the experimental structure factor magnitudes and 

phases found in the previous iteration cycle. We defined this distribution in the exponential 

form: 

( ) ( )









−
= rr

minmax

ln
exp

t
CPprior ,                                        (10) 

where C  is the normalizing factor (to have the sum of probabilities equal to 1), max  and min  

are the maximal and minimal values in synthesis ( )r , and t  is a parameter of the method 

named 'the contrast'. It is easy to see that t  is equal to the ratio of the maximal and minimal 

probabilities in (10). 

Second, several mask selection criteria were used together at the stage of the phase 

refinement. A feature of macromolecular biological objects is a sharp decrease in the structure 

factor magnitudes with an increase in the scattering angle (or, what is the same, with an 

increase in the scattering vector length s ) (Fig. 1). Therefore, the value of the correlation 

coefficient (9) can be strongly influenced by a few strong low resolution reflections weakly 

depending on high resolution reflections. To overcome this difficulty preventing accurate 
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phase determination at higher resolutions, the selection of the masks was performed using 

simultaneously several criteria (9) calculated in resolution zones 60-25, 40-25, 30-25 Å, which 

led to the successive exclusion of strong reflections of the low resolution from the calculation 

of control criterion (9). 

3. TEST OBJECT 

To study the potential of this approach, the known trimeric structure of the cyanobacterial 

photosystem I [16] (PDB code 1JBO [8]) was used as a test object. This trimer contains 36 

protein chains and 381 co-factors, which amounts to about 72 thousands of non-hydrogen 

atoms. The trimer has the molecular weight of 1068 KDa and external dimensions 

approximately equal to 200 × 200 × 100 Å. Figure 2 shows the overall structure of the trimer. 
 

 
 

Fig. 2. The protein moiety of the trimer of PS-I (top row; different colours correspond to different 

monomers) and the structure of the monomer (bottom row; proteins and co-factors).  

 

The goal of our study was to investigate the influence of imaginary crystal cell dimensions 

on the possibility of solving the phase problem and the accuracy of the phases found. As 

already mentioned, if the intensities of the waves scattered by an isolated particle are available 

for a continuous region of scattering vectors, then the researcher has a certain freedom to 

define an imaginary crystal cell. However, the selection of too large cell parameters may lead 

to an unacceptable growth in the complexity of the calculations. Therefore, one has to find a 

compromise between the complexity of calculations and the quality of the results. Below, we 

discuss the results of ab initio determination of structure factor phase values for three variants 

of the unit cell dimensions (Table 1). The tests were conducted for a cubic cell, assuming that 

we know nothing about the shape of the object. Compared to the Nyquist limit (defined as the 

inverse of the double size of the object, i.e. 4001  Å-1) for diffraction intensities sampling in 

the reciprocal space, the sampling step was greater than this limit for cell c1, equal to it for 

cell c3, and 1.5 less for cell c4. Table 1 summarizes the parameters of cells and the number of 

structure factors in different resolution shells in. 

For each cell, the structure factor magnitudes and phases were calculated from the atomic 

coordinates for the resolution zone -25 Å. The calculated values of magnitudes were further 
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considered as the experimentally obtained values. The phase values calculated from the model 

were not involved in solving the phase problem and were used only to check the results. To 

estimate the closeness of different phase sets, the map correlation coefficient was calculated 

for different resolution shells 

  ( ) ( )
( ) ( ) ( )( )

( )







−

=

Ss

Ss

s

sss

s
2

2

minmax

~cos

,
exact

exactexact

F

F

ddCP .                         (11) 

The summation here is performed over structure factors with  minmax 11: dsd = sSs , 

( ) ( )ss exactexactF ,  are the exact values of the structure factor magnitudes and the phases (those 

calculated from atomic coordinates), and ( ) s~  is the phase set obtained by the best 

alignment of the set ( ) s  with respect to ( ) sexact  phases [14-15].  

 

Table 1. Dimensions of the unit cells used and the number of reflections for different resolution 

shells 

 Unit cell 

с1 с3 с4 
Cell parameters [Å] 250 × 250 × 250 400 × 400 × 400 600 × 600 × 600 

"Solvent content" (%)1 91.59 97.95 99.39 

Grid for mask generating 30 × 30 × 30 48 × 48 × 48 72 × 72 × 72 

No. reflections in resolution shells  

 -25 Å 
2071 8538 28877 

 -30 Å 1234 4921 16700 

 -40 Å 510 2082 7061 

 -60 Å 152 618 2084 

60-40 Å 358 1464 4977 

40-30 Å 724 2839 9639 

30-25 Å 837 3617 12177 

redundancy2 0.23 0.96 3.25 

1The solvent content was defined as (1.0-1.23·Mw/Vcell)·100 %, where Mw is the molecular mass of the 

trimer, and Vcell is the unit cell volume.  
2The redundancy was defined as Nref /(3·Np), where Nref is the number of reflections in the resolution zone 

-25 Å, Np is the number of grid nodes in the region with the specific volume equal to 1.6 Å3/Da. 

 

The test object is a trimer and has a three-fold symmetry axis. In our tests, this symmetry 

was not taken into account. Of course, taking this symmetry into consideration could facilitate 

the solution of the phase problem and lead to more accurate phase values (see e.g. [17]). 

However, since the purpose of the tests was to check the efficiency of the technique based on 

the use of connected masks, we did not use additional methods of phase refinement to avoid 

their influence on the result. On the contrary, a spontaneous manifestation of the three-fold 

symmetry in the final electron density maps is an additional proof of the correctness of the 

solution of the phase problem. 

In the mask generation procedure, the grid step in the unit cell was taken equal to 3mind , 

and it was equal to 4mind  in the phase alignment procedure, i.e. 8.3 and 6.25 Å, 

correspondingly. The contrast value in distribution (10) was taken as 106. At each step of 

phasing, the construction of random masks was performed until 100 admissible masks were 

selected. The alignment of phase sets was performed in the resolution zone -25 Å. 
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4. RESULTS 

An essential parameter of our method is the mask size or, equivalently, the expected 

volume of the particle. This characteristic can be expressed in different units. In this paper, we 

estimate the mask size either by the number of mask points or by the specific volume, defined 

as the ratio of the volume to the molecular mass of the particle. In crystallography, when 

calculating the solvent content, it is a common practice to take the specific volume of the 

molecular region equal to 1.23 Å3/Da [18−19]. However, this estimate is not optimal at low 

resolution as the borders of the molecule images are significantly smoothed at low resolution 

Fourier synthesis. To find the optimal estimate, different values of the size of the mask were 

tested. 

Another significant parameter is the cut-off value of the correlation coefficient (9), which 

determines the selection of masks. In our tests, this cut-off value was set either directly or in a 

relative scale (as z-score) 

CM

crit

crit

CMCM
z



−
= .                                                (12) 

Here CM  and CM  are the mean value and the standard deviation of CM , respectively, 

calculated over a large number of generated variants. Table 2 shows the results of the initial 

phasing for different combinations of the mask size and the selection cut-off.  

 
Table 2. The quality of the averaging of the structure factor phases corresponding to admissible 

masks selected from randomly generated masks on the basis of magnitude correlation (9). The 

values of phase correlation (11) are shown for resolution shells: ∞−60, ∞−40, ∞−30, ∞−25 (top 

row) and 60−40, 40−30, 30−25 Å (bottom row). The cut-off zcrit was defined for the resolution 

shell ∞−25 Å. The unit cell was c1  

CP*100 

Mask volume: 

specific [Å3/Da]/No. of points 

1.0 

1845 

1.2 

2214 

1.4 

2583 

1.6 

2952 

1.8 

3321 

2.0 

3691 

zcrit 

No 
66/61/59/57 

18/24/04 

66/60/57/56 

−01/28/18 

69/64/59/57 

15/04/00 

73/67/64/62 

16/26/−02 

75/69/63/62 

17/−10/00 

77/72/69/67 

28/21/14 

1.5 
72/68/64/62 

21/15/13 

73/66/62/61 

−02/09/11 

82/74/68/67 

−06/−05/12 

81/75/72/70 

22/22/11 

81/75/71/68 

22/13/−09 

81/75/70/68 

21/05/05 

2.0 
75/68/65/63 

11/12/14 

81/73/68/66 

03/−02/−04 

83/75/70/68 

−02/05/10 

79/72/68/66 

06/16/11 

81/75/71/69 

18/18/09 

80/75/71/69 

22/22/04 

2.5 
76/69/66/64 

08/21/14 

83/77/73/71 

20/18/01 

85/76/71/69 

−10/05/09 

87/82/75/73 

33/−10/−09 

83/77/73/71 

24/17/04 

83/75/71/69 

−01/19/10 

3.0 
79/73/70/68 

13/25/13 

88/81/76/74 

16/08/04 

83/76/70/68 

16/−05/05 

88/83/78/76 

30/27/08 

85/79/75/73 

16/25/02 

82/76/71/69 

19/08/01 

 

The first row of the table corresponds to the test with no mask selection. This means that the 

phase sets corresponding to the first 100 randomly generated masks were aligned and 

averaged to produce the resulting phases. As was shown previously [14−15], even in this case, 

the resulting phase values, are closer to the true ones than the phase sets generated randomly. 

Testing different mask sizes showed that the optimal size of the mask is in the range of the 

specific volumes 1.4−1.8 Å3/Da, which is consistent with the results obtained earlier for other 

objects [14−15]. At the second step of phasing (phase refinement), the specific volume was 

fixed as 1.6 Å3/Da. 
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Table 3. The results of phase refinement. The values of phase correlation (11) are shown for 

resolution shells: ∞−60, ∞−40, ∞−30, ∞−25 (top row) and 60−40, 40−30, 30−25 Å (bottom 

row). The cut-off zcrit was defined for resolution shell ∞−25 Å. The unit cell was c1  

CP*100 /No. of 

masks build  

Start phase set to build distribution (10) 

r1 r2 r3 r4 r5 
Start 87/82/75/73 

33/−10/−09 

14087 

83/77/71/69 

16/01/−14 

18469 

84/78/73/71 

16/08/02 

22039 

87/80/75/73 

17/11/−03 

21979 

83/76/71/69 

07/10/05 

19074 

Step 1 95/90/83/80 

46/−12/−13 

513 

89/83/78/75 

20/18/−05 

633 

90/85/78/76 

32/00/−03 

555 

92/87/82/80 

36/28/15 

625 

90/83/76/74 

12/−03/02 

544 

Step 2 94/90/84/82 

47/12/01 

105 

91/84/80/77 

24/22/02 

103 

91/86/80/77 

35/08/−05 

100 

94/89/85/83 

44/32/15 

111 

92/85/78/76 

16/00/05 

104 

Step 3 96/92/85/82 

50/−05/−01 

114 

91/85/81/78 

26/24/07 

121 

91/86/81/78 

37/14/−04 

110 

94/90/86/84 

47/36/17 

105 

92/85/79/77 

20/02/05 

162 

Step 4 95/90/85/83 

49/18/06 

181 

91/85/81/79 

27/26/08 

116 

92/87/82/79 

39/19/−02 

135 

96/92/87/85 

48/24/09 

111 

93/86/80/78 

22/04/05 

245 

Step 5 95/91/85/83 

50/21/09 

159 

92/86/81/79 

28/26/09 

209 

92/87/82/80 

40/22/01 

137 

95/91/87/85 

51/38/18 

224 

93/87/81/78 

24/06/05 

678 

Step 6 95/91/86/84 

50/23/11 

332 

92/86/81/79 

28/26/10 

301 

92/87/83/80 

41/24/04 

226 

97/93/88/86 

53/28/12 

119 

93/87/81/79 

26/07/06 

1434 

Step 7 95/91/86/84 

51/24/12 

608 

92/86/81/79 

29/25/11 

333 

92/88/83/81 

41/25/06 

289 

97/93/88/86 

54/29/12 

317 

94/87/82/79 

27/09/06 

1242 

Step 8 95/91/86/84 

52/25/14 

1241 

92/86/82/79 

29/24/11 

582 

93/88/83/81 

43/25/08 

362 

96/92/88/86 

55/41/20 

276 

94/87/82/80 

28/11/06 

1104 

Step 9 95/91/86/84 

53/25/15 

2155 

92/86/82/79 

29/23/11 

819 

93/88/83/81 

44/24/09 

570 

97/93/89/87 

56/33/15 

664 

94/88/82/80 

28/13/06 

1112 

Step 10 95/91/86/84 

56/25/14 

1843 

92/86/82/79 

29/21/11 

1269 

93/88/83/81 

44/24/10 

774 

96/93/89/87 

57/44/22 

1220 

94/88/82/80 

29/14/06 

2224 
 

The results of the phasing depend on the random number generator and may differ for 

different initializations of this generator. To study the process of phase refinement more 

thoroughly, five preliminary phase sets 51 rr −  were obtained independently. In the five runs, 

different seeds were used to initialize the random number generator, but the mask size and 

cut-off correlation values were the same (1.6 Å3/Da and 2.5critz =  for the criterion 

 25−CM , correspondingly). The first row in Table 3 shows the quality of these five initial 

phase sets. Then, 10 refinement cycles were applied to each of the five solutions as described 

in Section 2.  

For phase refinement, the phase values obtained in the previous cycle were used to build 

the Fourier synthesis and prior distribution (10); the contrast value was fixed as 
610=t  for all 

refinement cycles. Four criteria, namely  , 25CM  ,  60,25CM ,  40,25CM ,  30,25CM  

were used to select the masks. The criteria choice corresponded to a gradual elimination of 

strong low resolution reflections. The cut-off values of the criteria for each cycle were taken 

as the mean values of corresponding criteria for the masks selected in the previous refinement 

cycle. The exception was the first cycle where the cut-off values were determined as the 

average values of the criteria for the masks generated in a trial run. The results of the phase 
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refinement are summarized in Table 3. Figure 3 shows changes in the cut-off values of the 

selection criteria during refinement.  

 

0.93

0.94

0.95

0.96

0.97

0.98

1 5 10

r1 (95%)

r2 (92%)

r3 (93%)

r4 (96%)

r5 (94%)

CM crit  [9999,25]

cycle
0.8

0.82

0.84

0.86

0.88

0.9

0.92

1 5 10

r1 (56%)

r2 (29%)

r3 (44%)

r4 (57%)

r5 (29%)

CM crit  [60,25]

cycle

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

1 5 10

r1 (25%)

r2 (21%)

r3 (24%)

r4 (44%)

r5 (14%)

cycle

CM crit  [40,25]

0.78

0.8

0.82

0.84

0.86

0.88

1 5 10

r1 (14%)

r2 (11%)

r3 (10%)

r4 (22%)

r5 (6%)

cycle

CM crit  [30,25]

 
 

Fig. 3. Change in the cut-off value during phase refinement. Figures in the boxes correspond to the 

achieved phase correlation (in accordance with Table 3). The unit cell was c1. Five independent runs 

were done. 

 

The tests with cells c3 and c4 were done similarly to tests with cell c1. The results of the 

tests are summarized in Tables 4−6 and Figures 4 and 5. 

 
Table 4. The quality of the phase sets obtained by averaging the structure factor phases 

corresponding to admissible masks selected from randomly generated masks on the basis of 

magnitude correlation (9). The values of phase correlation (11) are shown for the resolution 

shells: ∞−60, ∞−40, ∞−30, ∞−25 (top row) and 60−40, 40−30, 30−25 Å (bottom row). The cut-

off zcrit was defined for resolution shell ∞−25 Å. The unit cell was c3 

CP*100 

Mask volume: 

specific [Å3/Da]/No. of points 

1.0 

1846 

1.2 

2215 

1.4 

2584 

1.6 

2954 

1.8 

3322 

2.0 

3691 

zcrit 

No 
72/67/65/63 

21/27/06 

76/69/64/62 

01/−15/04 

77/70/67/65 

02/25/04 

79/73/69/67 

03/13/04 

72/68/65/64 

25/22/12 

75/69/65/64 

07/10/04 

1.5 
80/73/70/68 

00/19/−05 

82/76/70/68 

17/−07/−11 

83/77/74/71 

19/22/−05 

86/81/76/74 

26/07/−07 

87/82/78/75 

32/19/−15 

87/82/76/74 

31/−05/−09 

2.0 
81/75/71/69 

−01/23/11 

86/80/75/73 

14/10/−03 

86/81/77/75 

24/23/13 

86/81/77/75 

27/19/−04 

88/84/79/76 

32/19/−13 

87/82/78/76 

33/22/−13 

2.5 
80/75/71/69 

17/28/−01 

86/81/77/74 

22/22/−06 

87/82/77/75 

24/15/−01 

88/84/78/76 

33/05/−14 

88/83/78/76 

29/18/−12 

90/86/81/78 

41/08/−12 

3.0 
86/80/76/74 

10/21/03 

89/82/78/76 

16/15/01 

89/84/79/76 

30/13/−05 

90/85/80/77 

34/11/−12 

90/86/81/79 

39/21/−05 

90/86/81/78 

36/21/−13 
 

For phasing with cell c3, the parameters of the method (mask size and cut-off level) were 

tested first (Table 4). The results obtained are close to those observed in the test with the cell 
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c1: the optimal size of the mask varies in the range 1.6−1.8 Å3/Da, and the accuracy of the 

preliminarily found phase sets increases with increasing cut-off value. At the same time, in 

general, the accuracy of the phase problem solutions was higher than it was for the same 

parameters in the tests with the cell c1. As before, five independent preliminary solutions 

51 rr −  were generated using the same parameter values 1.6 Å3/Da and 2.5critz = , but with 

different seeds of the random number generator. The same parameters were used in phasing 

with the cell c4, where testing the preliminary phasing was omitted. Despite the fact that the 

best results in Tables 3 and 4 correspond to the cut-off value 3.0critz = , the smaller value 

2.5critz =  was used to produce preliminary solutions 51 rr − . This was done for two reasons. 

First, using the cut-off 3.0critz =  leads to an essential growth of computational cost, 

especially for the cell c4. Second, with real objects, the strength of the selection should be 

consistent with the precision of experimental data and should not be excessively high. 

 
Table 5. The results of phase refinement. The values of phase correlation (11) are shown for the 

resolution shells: ∞−60, ∞−40, ∞−30, ∞−25 (top row) and 60−40, 40−30, 30−25 Å (bottom 

row). The cut-off zcrit was defined for resolution shell ∞−25 Å. The unit cell was c3 

CP*100/No. of 

masks build 

Start phase set to build distribution (10) 

 

r1 r2 r3 r4 r5 

Start 

87/81/77/75/ 

23/23/07 

36490 

88/82/76/73/ 

17/−12/−08 

37336 

87/81/74/73/ 

18/−14/12 

39327 

87/81/76/74/ 

22/02/05 

35142 

87/83/79/77/ 

40/28/10 

39069 

Step 1 

94/90/86/84/ 

42/35/19 

559 

94/88/82/79/ 

24/−00/−12 

508 

93/87/81/79/ 

27/−09/19 

529 

92/88/83/81/ 

35/12/16 

537 

94/91/87/85/ 

55/42/20 

573 

Step 5 

96/94/91/89/ 

63/55/29 

562 

95/91/87/84/ 

46/21/−03 

154 

95/91/85/82/ 

45/05/−00 

100 

95/91/87/85/ 

50/34/26 

1250 

96/93/91/89/ 

65/56/28 

163 

Step 10 

97/94/92/91/ 

68/62/34 

799 

96/92/88/86/ 

53/33/02 

1000 

95/91/86/83/ 

52/13/00 

1032 

95/91/87/85/ 

50/35/21 

1292 

96/94/91/90/ 

69/59/36 

871 

 

Table 6. The results of phase refinement. The values of phase correlation (11) are shown for the 

resolution shell: ∞−60, ∞−40, ∞−30, ∞−25 (top row) and 60−40, 40−30, 30−25 Å (bottom row). 

The cut-off zcrit was defined for resolution shell ∞−25 Å. The unit cell was c4 

CP*100/No. of 

masks build 

Start phase set to build distribution (10) 

 

r1 r2 r3 r4 r5 

Start 

90/85/81/79 

25/28/09 

34190 

89/83/78/76 

18/−02/09 

38570 

91/85/79/77 

27/−16/09 

35081 

89/83/78/76 

18/15/07 

35394 

91/86/82/80 

24/25/20 

32130 

Step 1 

96/92/88/86 

46/37/06 

505 

95/90/84/82 

40/02/07 

561 

94/90/85/83 

47/13/20 

438 

94/89/85/83 

37/16/21 

524 

97/93/89/87 

47/34/29 

517 

Step 5 

98/95/92/90 

66/51/22 

334 

96/92/88/85 

54/21/02 

133 

95/92/89/86 

62/36/20 

101 

96/93/89/87 

57/37/26 

1425 

98/96/94/93 

73/57/51 

141 

Step 10 

98/96/94/92 

73/57/38 

169 

96/93/88/86 

58/27/07 

557 

95/92/89/87 

62/36/17 

405 

94/90/88/86 

49/55/32 

42780 

99/97/95/94 

79/65/56 

420 
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Fig. 4. Change in the cut-off value in the course of phase refinement. Figures in the boxes correspond to 

the achieved phase correlation (in accordance with Table 5). The unit cell was c3; five independent runs. 
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Fig. 5. Change in the cut-off value in the course of phase refinement. Figures in the boxes correspond to 

the achieved phase correlation (in accordance with Table 6). The unit cell was c4; five independent runs. 
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DISCUSSION AND CONCLUSIONS 

Figure 6 shows the accuracy of phase problem solutions obtained at different stages and 

for different choice of an auxiliary imaginary crystal cell. It follows from the sections above 

and from Tables 3, 5 and 6 that increasing the size of an imaginary cell improves the results. 

Furthermore, this improvement goes beyond the "Nyquist limit" (defined as the inverse to the 

double size of the particle). Figure 6 and Table 3 also show that, even with the cell size below 

the Nyquist limit, the procedure provides reasonable information about the phase values, 

although at a lower resolution than for larger unit cells. The possibility to obtain phase 

information, even with the limited cell size, is due to the fact that the introduction of 

additional information such as, binarity, connectivity, finite dimensions of the particle, etc. 

into the process of phasing allows one to escape false solutions. 

Figure 7 shows phase correlation (11) in different shells in the reciprocal space for the 

best solutions obtained with different cells. Along with Tables 5 and 6, this confirms that 

increasing imaginary cell parameters and involving additional experimental information 

improve the accuracy of the phases. The plot corresponding to the best solution (r5 for cell 

c4) repeats the shape of the plot for the averaged intensities (Fig. 1). This reflects the general 

trend of the known ab initio phasing methods: more reliable determination of phase values for 

stronger reflexes. Figure 7 (right) shows the value of the phase correlation for the expanding 

resolution shells 
mind−  in the reciprocal space. It confirms the same trend for improving the 

accuracy of solutions with increasing the cell size. 
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Fig. 6. Phase correlations (11) of current and exact phases for different stages of phasing for different 

cells. Correlation coefficients CP[−60] are shown by red diamonds, CP[60−40] by blue triangles, 

CP[30−25] by brown circles. For a particular stage and cell 5, similar markers correspond to five 

independent solutions (r1−r5). 

 

Figures 8 and 9 show an image of the PS-I trimer, corresponding to the best solution (r5 

for cell c4), in comparison with the image corresponding to the exact synthesis at 25 Å 

resolution. 
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Fig. 7. Phase correlations with the exact phases for the best solutions for three different unit cells. Left: 

phase correlation coefficients (11) calculated for thin spherical shells in the reciprocal space vs. squared 

shell radius s2 = (2sin/)2. Right: phase correlation coefficients (11) calculated for extending spheres in 

the reciprocal space vs. squared sphere radius.  

 

  

 

Fig. 8. Images of trimer PS-I as shown by 25 Å resolution Fourier synthesis maps. The regions 

corresponding to the specific volume 1.23 Å3/Da are shown. Two of three monomers in the atomic model 

are shown as cartoon. Left: the best ab initio phases (r5 in cell c4) were used together with the observed 

magnitudes to calculate Fourier synthesis. Right: the exact phase values were used.  

 

 
 

Fig. 9. Images of trimer PS-I. as shown by 25Å resolution Fourier synthesis maps. The regions 

corresponding to the specific volume 1.23 Å3/Da are shown. Surface: the best ab initio found phases (r5 

in c4 cell) were used together with the observed magnitudes to calculate Fourier synthesis. Mesh: the 

exact phase values were used.  
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In the case of a real object, the exact phase values are unknown. Hence, the value of the 

phase correlation (11) cannot be calculated and used to select the best solution from a series 

of independently obtained ones ( 51 rr −  in our tests). Some approaches to the selection of the 

best solution are discussed in [15]. Figure 5 suggests that the cut-off values achieved during 

refinement can serve as an additional indicator of the quality of the solution. Although this 

characteristic is not in a one-to-one correspondence with the quality of the solution, the best 

solution in case of the cell c4 could be identified on the basis of the plots shown in Figure 5. 

The cut-off values attained for solution r5 dominate the others in all resolution shells 

considered. The situation is less clear for cell c3 (Fig. 4). Here, the cut-off values of the two 

best solutions dominate only in the first three resolution shells. At the same time, it should be 

noted that for the fourth resolution shell the phase correlation coefficients for all five solutions 

are very low. It can be said here that the effective resolution for the phase sets is limited to 

30 Å. A similar situation can be observed with the cell c1 (Fig. 3) where the effective 

resolution of the best solution is limited to about 40 Å. Thus, using the criterion discussed, 

one can distinguish the best solution if the solution is quite good; however, this criterion 

cannot properly indicate the hierarchy of weak solutions. 

The results of the tests confirm that the suggested method solves the phase problem and 

demonstrate the advantage of using large imaginary cells. However, it should be noted that 

the tests were performed at limited computational capacity of laboratory computers. A further 

increase in the amount of experimental information involved would require a modification of 

the software including the use of computers with a parallel architecture. It should also be 

noted that the possibility of reducing the sampling step of the experimental data can be limited 

by the technical characteristics of the experimental equipment, such as the pixel size of the 

detector recording the intensities of scattered X-rays. 
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