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Abstract: Coding regions (CDS) being an integral part of any gene sequence, play an 

important role in the process of transcription. One of the tasks associated with the CDS 

regions, consists in the modeling of the passage of transcription bubbles named also open 

states or DNA kinks through the coding regions. In this paper, we present a simple and 

convenient approach to the modeling of the passage. It includes the calculation of the 

energy profile of the sequence and reducing the initial task to the modeling of the 

movement of a quasi particle in the field with this energy profile. To illustrate the method, 

we present the results of the calculations of the trajectories of the DNA kinks moving in 

the sequence of gene coding interferon alpha 17 (IFNA17) that consists of the three 

regions: the coding region and the two regions with unknown functional properties. To 

analyze the kink dynamics, we apply approximation where the DNA parameters are being 

averaged separately over each of the three regions. In the absences of dissipation, the total 

kink energy is constant. At the same time the kink velocity is constant only inside each of 

the regions. In the presence of dissipation, the total kink energy decreases. It is shown that 

the greater the total initial energy of the kink, the faster the energy decrease. It is 

suggested that the proposed approach could be useful in finding the ways to govern the 

movement of transcription bubbles at the first stage of the process of transcription. 
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INTRODUCTION 

Coding regions (CDS) being an integral part of any gene sequence, play an important role 

in the process of transcription. The sequence of the gene coding interferon alpha 17 

(IFNA17), is a simple example of the sequence containing only one CDS region [1, 2]. 

Indeed, according to GenBank [3], this sequence contains three different regions: the CDS 

region (50..619) and the two regions (1..49 and 620..980) with unknown functional properties 

(Fig. 1).  

 

Fig. 1. Three regions in the sequence of the gene coding interferon alpha 17 (IFNA17). The coding region 

(CDS) is shown by grey color, the region to the left of the coding region is shown by black color, and the 

region to the right – by white.  
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The details of the gene structure are presented in Table 1. There Nj is the total number of 

nitrous bases in the j-th region, Nj,A, Nj,T, Nj,G and Nj,C are the numbers of adenines, thymines, 

guanines and cytosines in the j-th the region, j = 1, 2, 3, 4. 

 
Table 1. Details of the structure of the sequence of the gene coding alpha interferon 17 

Region 
Coordinates 

of the region 
Nj,A Nj,T Nj,G Nj,C Nj 

1 1..49 15 12 7 15 49 

2 (CDS) 50..619 157 145 130 138 570 

3 620.980 110 146 44 61 361 

 

One of the most interesting tasks associated with the CDS regions, is the modeling of the 

passage of transcription bubble which is named also open state [4, 5], local unwound region 

[6, 7] and DNA kink [8, 9], through the CDS region (Fig. 2). Further we shall use the latter 

term.  

 

 

Fig. 2. Schematic picture of the DNA double chain with the moving transcription bubble. 

 

Surprisingly, the passage of the DNA kinks through the CDS region was not modeled by 

investigators, though the necessary mathematical formalism has been already developed. We 

can point out the model of Peyrard and Bishop [10] that takes into account the transverse 

motions of nucleotides, the Y-model [11–13] that takes into account the angular 

displacements of nitrous bases, the combined model [14] that takes into account both the 

angular and the transverse displacements, and numerous modifications of these models [15–

20]. Any of them could be used for the purpose. In this paper, we use one of the recent 

modifications of the Y-model [21, 22]. To model the movement of the DNA kink, we apply 

the method of trajectories that includes the calculation of the energy profile of the gene. 

MODEL AND METHODS 

In the Y-model, angular displacements of nitrogenous bases are modeled by the system of 

2N coupled nonlinear differential equations [21]: 
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Here φi,n(t) and Ii,n are the angular displacement and the moment of inertia of the n-th base of 

the i-th chain, Ri,n is the distance between the center of mass of the n-th base of the i-th chain 

and the nearest sugar-phosphate chain, K/
i,n is the coefficient of torsion rigidity of the sugar-

phosphate chain in the vicinity of the n-th base of the i-th chain, 
2

, ,i n i nR =  , α is the 

coefficient of dissipation, k1–2,n is the force constant that characterizes interactions between 

bases in pairs; i = 1, 2; n = 1, 2, … N. The values of the coefficients of these equations were 

first estimated in the paper [4]. Later a more complete and accurate set of parameters was 

presented in [22]. Here we use even more precise set of parameters (Table 2) that has been 

recently presented in [23]. 

 
Table 2. Model parameters  

Type of the 

base 

I × 10–44 

(kg∙m2) 

R 

(Å) 

K’ × 10–18 

(J) 

k1–2 × 10–2 

(N/m) 
 × 10–34 

(J∙s) 
A 7.61 5.80 2.35 6.20 4.25 

T 4.86 4.80 1.61 6.20 2.91 

G 8.22 5.70 2.27 9.60 4.10 

C 4.11 4.70 1.54 9.60 2.79 

Continuum approximation 

Assuming that angular displacements φi,n(t) are smooth functions, we rewrite 

equation (1)–(2) in the continuum approximation: 

2

1 1 1 1 1 2 1 1 2 1( ) ' ( ) ( ) ( )( ( ) ( ))sintt zzI z K z a k z R z R z R z− −  + +  −  

 1 2 1 2 1 2 1 1( ) ( ) ( )sin( ) ( ) ,tk z R z R z z−−  − = −   (3) 
2

2 2 2 2 1 2 2 1 2 2( ) ( ) ( ) ( )( ( ) ( ))sintt zzI z K z a k z R z R z R z−
 −  + +  −  

1 2 1 2 2 1 2 2( ) ( ) ( )sin( ) ( ) .tk z R z R z z−−  − = −     (4) 

Here the functions φi,n(t) have been transformed to φi(z, t). The coefficients have become the 

functions of the variable z: , ( )i n iI I z→ , ,' ' ( )i n iK K z→ , 1 2, 1 2 ( )nk k z− −→ , , ( )i n iR R z→ , 

, ( )i n i z →  , and the expression 1,1 ,1 1,1[ ( ) 2 ( ) ( )]n n nt t t+ − −  +   has taken the form: 2

izza  . 

Average field approximation  

We consider the angular fluctuations of nitrous bases of one of the two polynucleotide 

chains in the average field induced by the second polynucleotide chain. Then equation can be 

written as:  
2

1 1 1 1 1 2 1 1 2 1( ) ( ) ( ) ( )( ( ) ( ))sintt zzI z K z a k z R z R z R z−
 −  + +  −  

 1 2 1 2 1 2 1 1( ) ( ) ( )sin( ) ( ) tk z R z R z z−−  −    = −    (5) 

If we take into account that 

1 2 1 2 1 2 1sin( ) sin cos( ) cos sin( ) sin −    =     −     =  , 

then equation (5) can be rewritten in the form: 

2 2

1 1 1 1 1 2 1 1 1 1( ) ( ) ( ) ( )sin ( )tt zz tI z K z a k z R z z−
 −  +  = −  .   (6) 

Acting in the same way, we can rewrite equation (4) in the form: 

2 2

2 1 2 1 1 2 2 1 2 2( ) ' ( ) ( ) ( )sin ( )tt zz tI z K z a k z R z z− −  +  = −  .   (7) 

In further consideration, it is enough to consider the problem (6). The problem (7) can be 

obviously resolved in a similar manner. 
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Method of McLaughlin and Scott 

In the particular case of artificial homogeneous sequence, equation (6) transforms to the 

sine-Gordon equation with additional term that simulates effects of dissipation: 

2 2

1 1 1 1 1 2 1 1 1 1sintt zz tI K a k R−
 −  +  = −  .    (8) 

If dissipation is small, equation (8) can be solved by method of McLaughlin and Scott [24]. In 

the frameworks of the method the solution has the form of kink: 

1, 1 1 1,( , ) 4 {exp[( / ) ( ( ) )]}k kz t arctg d z t t =   −  ,   

 (9) 

moving with the velocity k(t) that is determined by the equation: 
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 =  is the relative velocity of the DNA kink, 2 1/2
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sound velocity in DNA, 2 1/2

1 1 1( / )d K a V=  is the size of the kink. The total energy of the kink 

is determined by the formula: 
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1/ 2

01 1 18( ' )  E K V −=  is the rest 

energy of the kink.  

The solution of equation (10) can be written explicitly [25]:  
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where 01 1, 0' ' ( )k t =   is the relative kink velocity at the initial time 0t , ( )
1/2

2

01 011 '
−

 = −  . 

Method of concentrations 

To make it possible to apply the approach of McLaughlin and Scott for inhomogeneous 

sequences, the method of concentrations can be used [26, 27]. According to the method, the 

coefficients of the initial model equations are averaged in the following way: 
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    (12) 

where Cj,i = Nj,i/N is the concentration of nitrous bases of the j-th type (j = A, T, G, C) in the i-

th chain (i = 1, 2); Nj,i is the numbers of nitrogenous bases of the j-th type in the i-th chain; N 

is the total number of bases in the gene coding interferon-alpha 17.  

Then initially inhomogeneous problem is reduced to homogeneous equation (8) but with 

the new coefficients determined by formulas (12). It is obviously that the solution in this case 

takes the form: 
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1,
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Method of blocks 

Formula (13) takes into account composition of the gene sequence but do not consider the 

arrangement of the nitrous bases in the sequence. The method of blocks permits 

approximately to take into account the arrangement. In the case of a gene encoding interferon 

alpha 17, the sequence contains three regions (or blocks). In the method of blocks, 

coefficients of the model equations are averaged not over all length of the sequence, but over 

the length of each of the three blocks. 

 
Table 3. Averaged model parameters  

Region I
~

× 10–44  

(kg∙m2) 

'
~
K × 10–18  

(N∙m) 
V
~

× 10–20  

(N/m) 

 × 10–34 

(J∙s) 
1 5.95 1.91 2.08 3.45 

2 (CDS) 6.20 1.95 2.16 3.52 

3 5.98 1.90 1.95 3.44 

 

Inside each of the blocks the problem can be easily solved by the method of 

concentrations. To “stitch” the solutions at the boundary between the neighboring blocks, it is 

suggested that in the vicinity of the boundary the total kink energy on the left and on the right 

from the boundary are equal. This condition is valid, however, only in the case of the absence 

of the energy loss when crossing the boundaries between the blocks. 

Results and discussion 

In Fig. 3 we present the energy profile of the gene coding interferon alpha 17. To 

construct the profile, we calculated the rest energy of the DNA kink according to the formula 

VKE
~

'
~

8
~

0 =  for each of the three regions (Table 4). Taking into account that the kink energy 

is constant inside each of the regions we obtained the desired energy profile. 

 
Table 4. Kink rest energy  

Region 0

~
E × 10–18 (J) 

1 1.60 

2 (CDS) 1.64 

3 1.54 
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Fig. 3. Energy profile of the gene coding interferon alpha 17 and schematic picture of the sequence (at the 

bottom). 

 

As can be seen from Fig. 3, the energy profile of the gene coding interferon alpha 17 

includes one barrier corresponding to CDS region. So, the problem of the kink movement in 

the gene can be reformulated now as the problem of the movement of a quasi particle in the 

potential field with one energy barrier. 

Results obtained in the absence of dissipation  

In this case, the total energy of the DNA kink remains constant during the movement 

along the whole gene sequence. Assuming that at the initial moment the velocity of kink is 

equal to 
01 , the total energy can be written as:  

01

2

01

01

( ) const

1

E
E t

C

= =

 
−  

 

,     (14) 

where 01 1 18 'E K V=  is the rest energy of the kink moving in the first region and 

2 1/2

01 ( ' / )C K a I=  is the sound velocity in the first region.  

Since the energy profile of the gene includes the barrier, it is interesting to estimate the 

minimum value of the initial kink velocity ( 01

crit ) required to overcome the barrier. We 

obtained the estimation by equating the total energy of the kink moving with the velocity 01

crit  

in the first region to the rest energy of the kink in the second region: 

01
02

2

01

01

.

1
crit

E
E

C

=

 
−  

 

.      (15) 

From (15) we found: 



TRAJECTORIES OF THE DNA KINKS IN THE SEQUENCES CONTAINING CDS REGIONS 

7 

Mathematical Biology and Bioinformatics. 2017. V. 12. № 1. doi: 10.17537/2017.12.1 

2
2

011
01

1 02

'
1crit EK a

I E

 
 = −  

 
.     (16) 

Inserting into (16) the values of the kink rest energies presented in Table 4, as well as the 

values of the averaged model parameters from Table 3, we found: 01

crit  = 453.80 m/s.  

In view of this value for further analysis we choose three model values of the initial kink 

velocity (
01 ): 500 m/s, 800 m/s and 1500 m/s. They all exceed the obtained critical value 

01

crit . Thus in all three cases, the DNA kink necessarily reaches the CDS region.  

To construct the kink trajectories, we applied the following simple algorithm. First of all 

we calculated the kink velocity in the second region (
2 ) by equating the total energies of the 

kink in the first and second regions: 

01 02

2 2

01 2

01 02

.

1 1

E E

C C

=

    
− −   

   

     (17) 

From (17) we found the required velocity: 

2
2

02 01
2 02 2

01 01

1 1
E

C
E C

  
  = − −  
   

.       (18) 

Acting in a similar way, we obtained the kink velocity in the third region: 

2
2

03 02
3 03 2

02 02

1 1
E

C
E C

  
  = − −  
   

.     (19) 

Inserting into (18) and (19) the values of the model parameters, we obtained the values of the 

kink velocities in all three regions and for each of the three model values of the initial kink 

velocity. The results of the calculation are presented in Table 5. 

 
Table 5. Velocities of the DNA kinks 

Region 1  

(m/s) 
2  

(m/s) 
3  

(m/s) 

 500 216.69 688.67 

2 (CDS) 800 670.64 914.16 

3 1500 1455.32 1525.68 

 

Secondly, we used the obtained values to calculate the time of crossing the first and 

second boundaries (
1t  and 

2t ), as well as the time of reaching the right end of the gene (
3t ): 

1
1

1

z
t =  


, 2 1 2 1

2

2

( )z z t
t

− + 
=


, 3 2 3 2

3

3

( )z z t
t

− + 
=  


,   (20) 

where, 
1z  and 

2z  are the coordinates of the first and the second boundaries, and 
3z  is the 

coordinate of the right end of the gene.  

Thirdly, we connected the points (0, 0), (
1t ,

1z ), (
2t ,

2z ) and (
3t ,

3z ). The obtained results 

are presented in Fig. 4. 
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Fig. 4. Trajectories of the DNA kinks in the gene coding interferon alpha 17 and schematic picture of the 

sequence (at the bottom). Calculations were made in the absence of dissipation and for three values of the 

initial kink velocity: (1) 01 = 500 m/s, (2) 01 = 800 m/s and (3) 01 = 1500 m/s. 

 

The results presented in Fig. 4 show that with the increasing of the initial kink velocity the 

trajectories become more independent on the sequence of nitrous bases. 

Results obtained in the presence of dissipation 

In this case, the total kink energy and the kink velocity are not constant even inside the 

regions. The dependence of the DNA kink velocity on time in each of the regions is described 

by the equation of McLaughlin and Scott [24]. In the first region (1..49) the solution of the 

equation has the form [25]:  

( ) 1
01 01

1

1,
2

01 1
01

101

exp

( )

1 exp

k

t
I

t

t
IC

  
  −  

   =

     
+  −    

   

,    (21) 

where υ01 is the initial kink velocity, 1

~
I  is the moment of inertia averaged over the first region, 

01

~
C  is the sound velocity in the first region, ( )

1/2
2

01 01 011 ( / )C
−

 = −  , 1  is the coefficient of 

dissipation. 

The solutions in the second (50..619) and in the third (620..980) regions are determined by 

the similar formulas: 
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( ) 3
03 03 2

3

3,
2

03 3
03 2

303

exp ( )
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1 exp ( )

k

t t
I

t

t t
IC
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 ,   (23) 

where 
02  and 

03  are the initial velocities of the DNA kink in the second and the third 

regions, 2

~
I  and 3

~
I  are the moments of inertia of nitrous bases averaged over the second and 

third regions, respectively, 02

~
C  and 03

~
C  are the sound velocities in the second and in the third 

regions, ( )
1/2

2

02 02 021 ( / )C
−

 = −  , ( )
1/2

2

03 03 031 ( / )C
−

 = −  , 2  and 3  are the coefficients of 

dissipation, 
1t  and 

2t  are moments of time of crossing the first and the second boundaries. 

Formulas (22) and (23) contain unknown values of the initial kink velocities in the second 

and thirds regions ( 02 , 03 ), as well as the moments of time of crossing the first and the 

second boundaries (
1t , 

2t ). To calculate them, we use approximation where the energy loss at 

the moment of crossing the boundaries is neglected. The results of the calculations are 

presented in Table 6. 

 
Table 6. The initial kink velocities and the moments of time of crossing the boundaries 

01  

m/s 
1t  

× 10–11 s 

02  

m/s 
2t  

× 10–10 s 

03  

m/s 
3t  

× 10–10 s 

500 3.68  –  – –  – 

800 2.19 570.31  –  –  – 

1500 1.12 1413.13 2.00 913.74 4.20 

 

By defining the coordinate of the DNA kink in the i-th region by the relation: 

( )
( ) ki

ki

dz t
t

dt
 = , we find the formulas that determine the dependence of the DNA kink 

coordinate on time for each of the regions:  

1, 1,

0

( ) ( )

t

k kz t d=    .      (24) 

1

2, 2,( ) ( )

t

k k

t

z t d=          (25) 

2

3, 3,( ) ( )

t

k k

t

z t d=          (26) 

With the help of formulas (24)–(26) and of the data of Tables 3 and 6, we construct the 

trajectory of the kink in the plane (t, z) for different values of the initial kink velocity 01  

(Fig. 5). 
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Fig. 5. Trajectories of the DNA kinks in the gene coding interferon alpha 17 and schematic picture of the 

sequence (at the bottom). Calculations were made in the presence of dissipation and for three values of 

the initial kink velocity: (1) 01 = 500 m/s, (2) 01 = 800 m/s and (3) 01 = 1500 m/s. 

 

Fig. 5 shows that in the first case (curve (1)) the initial total energy of the DNA kink is not 

large enough to overcome the energy barrier. Therefore when reaching the first boundary, the 

kink is reflected from the boundary and begins to move to the left end of the gene. After 

reaching the left end two scenarios are possible. 

a) The DNA kink leaves the gene and goes to the left neighboring region. This scenario is 

possible when the value of the rest kink energy in the left neighboring region is larger than or 

equal to the total kink energy at the moment of crossing the left end of the gene. 

b) The DNA kink is reflected from the left end of the gene. This scenario is possible when 

the value of the rest kink energy in the left neighboring region is less than the total kink 

energy at the moment of reaching the left end of the gene. After a few zig-zag motions the 

DNA kink stops. Just this scenario is shown in Fig. 5 (curve (1)). 

In the second case (curve (2)), the total energy of the DNA kinks is quite large to cross the 

first boundary and to get into the CDS region. But later the DNA kink stops inside the CDS 

region because of the energy losses due to dissipation. 

In the third case (curve (3)), the DNA kink passes the whole CDS region, gets into the 

third region and reaches the right end of the gene. Here again two scenarios are possible. In 

the first scenario, the DNA kink goes outside the gene. In the second scenario, the kink is 
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reflected from the right end of the gene and stops inside the third region, as it shown in Fig. 5, 

curve (3).  

The total energy of the DNA kink in each of the regions is the function of time:  

0

2

,

0

( ) , 1, 2, 3

( )
1

i
i

i k

i

E
E t i

t

C

= =   

 
−  

 

 ,    (27) 

where the velocities , ( )i k t  are the functions of time and determined by formulas (21)–(23).  

Fig. 6 shows the results of the calculations of the total kink energy made for three model 

values of the initial kink velocity: 500 m/s, 800 m/s and 1500 m/s. It can be seen that in the all 

three cases the total energy of the kink decreases due to effects of dissipation. The results 

show, that the greater the initial total energy of the kink, the faster the energy decrease. The 

energy decrease is limited, however, from the bottom by the rest energy of the kink shown in 

Fig. 6 by the thick solid line. 

 

Fig. 6. Energy losses of the DNA kink in the gene coding interferon alpha 17 and schematic picture of the 

sequence (at the bottom). Calculations were made for three values of the initial kink velocity: (1) 

01 = 500 m/s, (2) 01 = 800 m/s and (3) 01 = 1500 m/s. The thick solid line shows the energy profile of 

the gene. 

CONCLUSIONS 

In this paper, we presented a simple and convenient method of the analysis of the 

movement of transcription bubbles which were modeled by kink solutions of the modified 

sine-Gordon equation. With the help of the method we calculated the trajectories of the 

bubbles moving through the CDS region in the gene coding interferon alpha 17.  

It should be noted, however, that the developed approach is not without of some 

deficiencies and limitations. One of them is a rather large value of the initial kink velocity 

required to overcome the CDS region. One more limitation consists in the assumption of 

nonradioactive crossing the boundaries. Finally, it should be noted that all results have been 

obtained in the frameworks of the Y-model. But this model takes into account the angular 

oscillations of the nitrous bases only in one of the two polynucleotide chains of the DNA. The 
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second chain is modeled as an average field. The model also does not take into account the 

interaction of the angular displacements with transverse and longitudinal displacements of the 

nitrous bases. However, we hope that these limitations are not insurmountable, and the 

method can be generalized and applied to more accurate and complex models of the DNA 

dynamics.  

 
This work has been partly supported by the Program for increasing the international 

competitiveness of Tomsk State University for 2013–2020. 
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