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Abstract. Sequencing of the human genome began in 1994. Revealing of a human DNA 

draft took 10 years of collaborative work of many research groups from different 

countries. Modern technologies allow for sequencing a whole genome in a few days. We 

discuss here the advances in modern bioinformatics related to the emergence of high-

performance sequencing platforms, which not only contributed to the expansion of 

capabilities of biology and related sciences, but also gave rise to the phenomenon of Big 

Data in biology. The necessity for development of new technologies and methods for 

organization of storage, management, analysis and visualization of big data is 

substantiated. Modern bioinformatics is facing not only the problem of processing 

enormous volumes of heterogeneous data, but also a variety of methods of interpretation 

and presentation of the results, the simultaneous existence of various software tools and 

data formats. The ways of solving the arising challenges are discussed, in particular by 

using experiences from other areas of modern life, such as web and business intelligence. 

The former is the area of scientific research and development that explores the impact and 

makes use of artificial intelligence and information technology (IT) for new products, 

services and frameworks that are empowered by the World Wide Web; the latter is the 

domain of IT, which addresses the issues of decision-making. New database management 

systems, other than relational ones, will help to solve the problem of storing huge data 

and providing an acceptable timescale for performing search queries. New programming 

technologies, such as generic programming and visual programming, are designed to 

solve the problem of the diversity of genomic data formats and to provide the ability to 

quickly create one’s own scripts for data processing. 

 

Key words: Big Data, NGS, genome sequencing, IT technologies, bioinformatics, generic 

programming, visual programming, nonrelational databases, NoSQL systems, Hadoop, 

MapReduce. 

 

INTRODUCTION 

Currently, the concept of Big Data has become common. Although there is still difference 

of opinion regarding the strict definition of the term [1, 2], under big data, we understand 

information of a huge volume and of a diverse composition, which is often updated and 

located in different sources, as well as special technologies for storage, transfer, processing 

and analysis of this information. This understanding has not only firmly entered into the 

lexicon of information technology specialists, but also evolved from a fashionable 
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technological trend into a concept that includes approaches, technologies and techniques that 

are actively used in the most diverse areas of our society. Moreover, the notion of big data, as 

a separate technology of collection and treatment for huge data sets, has disappeared from the 

analytical report “Hype Cycle for Emerging Technologies, 2015” of the Gartner Inc, where 

the analytics of market excitement, maturity and of benefit of more than 2000 new 

technological solutions is given in a graphical form [3]. The company explained its decision 

by pointing out that the concept of "big data" includes a large number of actively used 

technologies, which are parts of other popular areas and trends and have become day-to-day 

working tools. The main task of working with such data to date is to extract valuable 

knowledge from them. The greatest successes have been achieved by the business sectors, by 

closely interacting with the consumer and, accordingly, by being able to get the most benefit 

from the correct analysis and prediction of the behaviour of potential customers. This, above 

all, applies to banks, telecommunications, retail, energy and utilities. Now we are talking 

about the competent use of large amounts of data by companies in their business processes of 

storage and processing, and their ability to make them useful to the business. Large data tools 

enable organizations to manage resources more efficiently, to anticipate events that can affect 

their business, and make informed decisions faster. 

Informatics responded to the revolutionary changes in the social life through the 

emergence of new scientific disciplines, the most actively developing among which are Web 

analytics and analysis of business data. Advanced solutions are available in these research 

areas already. 

Web Intelligence (WI) is an area of research and development that studies the role and 

practical consequences of applying of artificial intelligence (knowledge representation, 

planning and organization of knowledge discovery, data mining, use of intelligent agents) and 

advanced information technologies (wireless networks, e-globalization devices, social 

networks, the World Wide Wisdom Web (W4), and data and knowledge networks (grids)) to 

the next generation of products, systems, services and activities for the World Wide Web. 

Business intelligence (BI) includes technological tools for the collection, processing and 

analysis of business information designed to help corporate executives, business managers 

and other end users in business rule based decision making. Business analysis includes a wide 

range of tools, applications and techniques that allow organizations to collect data from 

internal systems and external sources, prepare them for analysis, design and execution of data 

requests, and to create reports, dashboards and other ways to visualize data to make the 

analytical results available to decision makers, as well as to decision executives. 

However, new trends based on the concept of large data are coming onto the peak of 

popularity. One of such trends is the Internet of Things (IoT) [4]. This term implies the 

revolutionary transformation of the modern Internet, when a lot of devices become "smart", 

able to collect, analyze information and exchange it over telecommunications networks, both 

with people and with each other. A high value is placed here on machine learning, the means 

of searching for rules and links in very large volumes of information; data mining; advanced 

means of visualization and self-analysis of data; decision support systems and artificial 

intelligence; system of recognition of natural languages, etc. 

However, all of the foregoing refers mainly to the industrial sphere of our society. At the 

same time, keeping in mind the onset of the "big data" term in 2008, we can remember that 

initially it was primarily concerned with the scientific sphere and, to a large extent, with 

bioinformatics. 

The term "bioinformatics" was first used in 1970 by B. Hesper and P. Hogeweg in an 

article published in Dutch that is not generally accessible [5]. There it was defined as "the 

study of information processes in biotic systems". The authors considered the management of 

information in various forms, for example, the accumulation of information in the process of 

evolution, information transmission from DNA to intra- and intercellular processes, the 

interpretation of information at various levels of life as the defining property of life. The 
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authors claim that they came up with this term in order to separate bioinformatics as a 

research field in addition to biophysics and biochemistry. 

Modern bioinformatics is a science that develops the use of computer methods for the 

analysis of a variety of genomic data. A huge role in the development of bioinformatics was 

played by the rapid development of computer technology and computational methods of data 

processing, and the emergence of modern telecommunications technologies. Bioinformatics is 

one of the science areas that are more dependent on the Internet and can only be successfully 

developed through the Internet. The very important for biology and medicine political 

decision, about the open accessibility of the most complex biological text – the human 

genome – has made this valuable source of knowledge accessible to scientists around the 

world and has enabled the formation of bioinformatics as a collective science, in which the 

achievements of separated teams are immediately made available to the entire scientific 

community, and where it is customary to freely distribute developed software and data. 

When botanist H. Winkler proposed, in 1920, the term "genome" for the designation of a 

set of chromosomes, he obviously did not suspect  that he was setting a fashion trend for the 

generation of more and more scientific words ending in "-ome" [6]. At that time, the concepts 

of biome (the set of living beings) and rhizome (the root system) already existed, but now 

scientists have thousands of different "-omes" [7]. Many of these terms are based on the 

Greek suffix "-ome", which means roughly "having the nature of". Simultaneous development 

of computer capacities and new technologies for obtaining data in various disciplines of 

biology related to the study of genomes led to the emergence of various disciplines called "-

omics" in bioinformatics; these disciplines analyse all the organism entities (DNA, RNA, 

proteins, metabolites, etc.) in their structural-activity relations. Genomics, metagenomics, 

transcriptomics, proteomics, metabolomics, interactomics and other areas of bioinformatics 

are engaged in the study of genomes, metagenomes, transcriptomes, proteomes, metabolomes, 

interactomes and other collection of objects [8]. 

Each of the bioinformatics disciplines has its own objects for studying and own 

technologies for obtaining data. But they all generate huge amounts of data in different 

formats and at different levels that need to be stored, systematized, comprehended and 

visualized in order to deepen existing knowledge and stimulate discoveries. 

MODERN BIOINFORMATICS: PROBLEMS AND SOLUTIONS 

Historically, genomics is one of the first -omics of bioinformatics, which is engaged in the 

study of the genome. Genome is defined as the genetic substance of all the chromosomes of a 

living organism. Genomics deals with the structure, functioning, evolution, mapping and 

annotation of genomes. Genome annotation is a description of the functional and structural 

characteristics of the genome: determination of location and ascribing function to functional 

(genes, coding regions, promoter and regulatory sites, transposable elements, etc.) and 

structural elements (repeats, homopolymer tracts, etc.), the features of the functioning of the 

genome, the relationships between genes and other functional properties of the genome. 

Unlike the genetics, that deals with the role of genes in heredity, genomics studies gene 

structure and mechanisms of gene functioning. The main method of obtaining data is the 

sequencing of genomic DNA. Until 2001, when, as a result of international scientific 

cooperation, the human genome was first "read" and published [9, 10], the sequencing was 

carried out by the Sanger method, which primarily gave birth to genomics. New sequencing 

technologies (Next-Generation Sequencing, NGS, or high-throughput sequencing) that 

appeared at the end of the first decade of the 21
st
 century dramatically reduced the cost of one 

genome processing from $100,000,000 in 2001 to $10,000 in 2011. One may say that they 

gave birth to metagenomics. Metagenomics studies the genetic material of a historically 

formed set of living species, united by a common area of distribution, called the biota. 

The result of the "Human Genome" project was one sequence of more than three billion 

nucleotides contained in the haploid human genome. However, genomic sequences slightly 
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differ from one person to another, so art of sequence deciphering could become really 

profitable only when the methods allowing a researcher to read several copies of a genome 

simultaneously were developed. Several dozen techniques are now available; each of them 

has its advantages, limitations and disadvantages. However, all of them are cheap and fast 

enough for use not only in specialized laboratories, but also in medical clinics. With their 

introduction, a quick determination of the extended genomic sequences of an individual 

became available, for example, in order to identify gene mutations that could lead to the 

development of various diseases. New high-performance sequencing technologies allow for 

the de novo sequencing and resequencing of a genome (DNA-Seq), studying of the whole 

body transcriptome (RNA-Seq) and single-cell transcriptome (scRNA-Seq), of the nature of 

the DNA-protein interactions (ChIP-Seq), epigenomes, metagenomes, etc. [8]. A single 

sequencer can provide a great variety of data for various –omics, while the procedures of their 

generation differ only in the methods (protocols) for preparing samples for sequencing 

libraries. 

Sequencing machines (sequencers) allow for processing of millions of fragments of 

nucleic acids in parallel, repeating operations of the same type for a hundred times, and each 

of these operations provides large data sets for analysis. For their processing, each sequencer 

is equipped with powerful server equipment, which helps to solve problems of proper reading 

of up to hundreds billions of nucleotides per hour, as a result of which biologists obtain 

fragments of a given length (reads). After this, researchers are faced with the task of 

assembling and annotating the genomic sequence. The different platforms and different 

manufacturers of sequencing machines are available [11]. The main platforms of the second 

generation NGS are the products of Illumina Inc., Thermo Fisher Scientific, Roche and 

Pacific Biosciences. They are all formally related to the discovery of polymerase chain 

reaction and automation of the main stages of DNA reading and are based on parallelizing the 

process of DNA reading. Several fragments of genomes can be determined with one run of 

the sequencer. Each of these technologies has its limitations in length and number of reads, in 

its price, in the availability of software and other parameters, but all of them are being 

actively developed in order to provide fast and cheap sequencing of any genomic data. The 

volumes of these data are enormous; they must first be stored, analyzed and presented in a 

form useful to biologists. A great variety of sequencing machines, each of which has its own 

application domain, forces biologists to become experts in a large number of methods, 

individual computer programs created in-house and through collaborative development by 

community members, as well as in a variety of data formats and databases. The revolutionary 

development of sequencing technologies poses new challenges for software developers and 

IT-specialists. 

Software 

A great many programs for work with NGS big data are available now [12]. Most of them 

are commercial products, the most famous and widely used among them are BaseSpace 

(Illumina, Inc.) [13], CLCBio [14], Lasergene (DNASTAR, Inc.) [15] and Geneious Basic 

[16]. Galaxy [17, 18], Globus Genomics [19], PATRIC [20], and UGENE [21, 22] are 

popular among free and hybrid (partially commercial, partially free) software tools. They 

have the broadest capabilities, most of these software packages can be installed on a local 

computer or server, and they work under different operating systems. However, despite the 

huge assortment of NGS software released in recent years, there is still no balance between 

the requirements of users and the capabilities that the tools offer. 

Modern software solutions for analysis of the NGS data deluge should be provided with a 

convenient development environment. The time of biologists not concerned with IT-

technologies is a thing of the past. When a researcher cannot quickly create an own innovative 

application can slow down and complicate the analysis of data. Modern tasks of genomic data 

analysis require an above average level of computer training. Researchers involved in large 
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projects, performed by several laboratories, need completely new interactive tools actively 

using high-performance computing infrastructure for the analysis of the NGS data sets. In the 

situation, when amount of more and more sophisticated data grows continuously, the future 

will belong to tools of online analysis and storage facilities that ensure the collaborative work 

of researchers, to methods that provide a high degree of interactive data analysis and 

visualization. Examples of software for managing scientific workflows designed specifically 

for work with large scientific data and more or less used for bioinformatics problems are 

KNIME [23], Pipeline Pilot [24], and TAVERNA [25]. 

Workflow management system is software used to accumulate performance parameters 

and to monitor a certain chain of tasks arranged in form of a working process. The system is a 

part of the infrastructure for launching, executing and monitoring scientific workflows. Such 

products have replaced software libraries, equipped with command line option, which were 

suitable only for software developers and trained users, and serve now as the basis for 

development of high-level software packages with an advanced graphical user interface (GUI) 

including menus and premade workflows or a pipelined data analysis. 

Availability of an easily learned and understandable interface is a key aspect of the future 

development in NGS research, as it can ensure successful work of users without the 

knowledge of the basics of programming. The programs in large high-level software packages 

are carefully designed so that users do not make mistakes caused by the lack of special 

knowledge. In addition to the GUI, these packages provide a possibility to use single 

functions and premade workflows, as well as visual workflow designers. Visual designers are 

different from GUIs because they have their own graphical interface, which allow a user to 

combine existing program functions into new data processing pipelines, not available in pull-

down menus or icons of a GUI. 

When a user is forced to use a high-performance computing infrastructures to carry out 

projects related to, for example, a large number of human genomes, he must be able to use the 

software tool already familiar to him, with which he already dealt, but not learn a new one. 

An example of the correct design of application software is a software system that provides 

unchanging program syntax for all possible configurations (desktop, server, or distributed 

environment). 

Despite the abundance of programs for NGS, there is a lack of opportunities for low-level 

programming to work with specific data structures, for example, with de Bruijn graphs used 

in genome assembly tasks or for performing specific functions, for example, using the 

Burrows-Wheeler transform for data compression. These features are not available in C++ or 

Java. BAMTools [26], htsliv (SAMtools / bcftools) [27], NGS++ [28], Bioclojure [29], and 

libStatGen [30] use standard data formats and provide little opportunity for using specific data 

structures and developing new algorithms needed for the analysis of NGS data. Despite the 

availability of developments in the technology of generic programming [31], their application 

to NGS is problematic due to a giant leap in the data volumes. This is also true for extensions 

of the open source programming languages Bioperl [32], BioRuby [33], BioJava [34], and 

Biopython [35], which were created due to the efforts of the Open Bioinformatics Foundation 

[36] for large data processing packages such as Bioconductor [37, 38]. 

Generic programming is a programming paradigm that consists of such a description of 

data and algorithms that can be applied to different types of data without changing the 

description itself. In one form or another, it is supported by different programming languages. 

The notions of generic programming first appeared in the 1970s in the form of generalized 

functions in the languages CLU and Ada, then in the form of parametric polymorphism in ML 

and its descendants, and then in many object-oriented languages such as C++, Java, Object 

Pascal, D, Eiffel, languages for the .NET platform and others. 

Generic programming is considered as a programming methodology based on the 

separation of data structures and algorithms through the use of abstract descriptions of 

requirements. Abstract descriptions of requirements are an extension of the concept of an 
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abstract data type. Instead of describing a single type in generalized programming, a family of 

types sharing a common interface and semantic behavior is used. A set of requirements that 

describes the interface and semantic behavior is called a concept. The algorithm written in the 

generalized style can be applied to any type that satisfies its concepts, which is called 

polymorphism. In C++, object-oriented programming is implemented through virtual 

functions and inheritance, in generic programming – using class templates and functions. 

To provide for all the needs of researchers capable of low-level software development and 

creating high-level programs for the enhancement of capabilities for analyzing NGS data, a 

visual programming can be applied. Visual programming is not a new concept [39]; since the 

early 1960s, it has been the subject of a philosophical discussion. This is the way to create a 

computer program by manipulating graphic objects instead of writing text. Visual 

programming is often presented as the next stage in the development of text-based 

programming languages. Recently, greater focus has been placed on visual programming due 

to development of the mobile sensor devices. Visual programming is mainly used to create 

programs with a graphical user interface. The visual programming environment allows for 

creation of web applications and console applications. 

Data Formats 

Heterogeneity of biological data is a big problem. Each manufacturer of a new device 

develops its own data format, making the task of data unification more and more difficult. 

This proves that people working with various devices should have good programming skills 

to have a possibility to modify existing scripts or create new ones to parse the data and 

convert one format to another. 

In the era of big data, the usual conventional formats of data storage are changing. For 

data exchange, basic data formats such as PDB for spatial structures of proteins, FASTA for 

nucleotide and amino acid sequences have been developed and for a long time considered to 

be classical. Now there are new data formats. The PDB database format can serve as an 

example [40]. This format, appearing first in the 1970s, has long been used to store and 

exchange data on the structures of small proteins. However, the PDB format cannot be used 

for large complexes that consist of thousands amino acids, so now the PDBx/mmCIF format 

was introduced, which combined the PDB format and the mmCIF crystallographic data 

storage format [41] and officially replaced the PDB format in 2014. Another format for large 

scale structures that has been recently proposed is the MMTF (MacroMolecular Transmission 

Format) is a compact binary format for storage and transmission of large structural data for 

faster visualization and analysis [42]. The binary format enables extraordinary compaction of 

the data, allowing the entire PDB archive to be stored in less than 7GB.  

Bioinformatics has always been associated with a large number of databases, which store 

a variety of genomic data. The most comprehensive NAR online Molecular Biology Database 

Collection currently contains about 1900 resource descriptions published in the annual 

Database issue by Nucleic Acids Research (NAR). The collection is divided into 15 subject 

categories subdivided further into 41 subcategories [43]. This systematization is largely 

nominal, because it is considered a good practice to make information resources polythematic, 

to organize cross-references between all other databases where relevant information is 

contained. The collection has been going for almost a quarter of a century, it has a "golden" 

core of 105 resources that have existed for a long time and are constantly being updated. The 

largest databases, which contain voluminous experimental data, such as nucleotide and 

protein sequences, data on the structures of biological macromolecules, crystallographic data, 

etc., are replenished mainly by the experimenters using the electronic submission system. 

This is due to the requirements of the journals that publish results of this kind. The authors, 

before submitting an article reporting a sequencing of a biomolecule structure, should deposit 

their data to a public resource, making them available to the entire scientific community. 
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Storage and exchange of data 

The problem of databases completeness is solved by creating database consortia 

established to store sequences of DNA and protein. Nucleotide sequences are uploaded into 

one of the three databases GenBank [44], ENA [45] or DDBJ [46] either by the authors or by 

the sequencing centres. Between these three databases, daily data exchange is carried out, so 

that daily updates on the NCBI servers, where GenBank is stored, include the latest available 

sequence data from all three sources. 

However, in the new era of big data, conventional database management systems based on 

the relational principle do not correspond anymore to large amounts of data, a variety of 

formats, the need to share data originated in various spots all over the world and to a variety 

of search queries [Ошибка! Источник ссылки не найден.]. Relational organization of data 

storage assumes the availability of pre-defined search fields and logical structure of requests. 

To store data in a relational schema, tables are constructed for each search field, in which the 

field values are written. When resolving queries, temporary tables are built, which, with huge 

amounts of data, makes the work inefficient, and in some cases, impossible. Therefore, key 

Internet players such as Amazon, Inc. and Google, Inc. in the early 2000
th

 began the 

development of new database management systems. 

One such solution is NoSQL ("Not Only SQL"), a class of non-relational database 

management systems (DBMS) designed to work with big data [47]. NoSQL systems provide 

a fast response time to search queries with a high throughput of processing the flow of 

requests. These systems can be divided into two groups, according to the type of storage 

organization. 

The first group uses the logical principle of "key-value". It is, in fact, an associative table; 

each key has a unique value. The second group of systems is document-oriented. This is not a 

fully systematized storage; the tables are not used here. 

Other non-relational data management systems are graph databases that use the structure 

of graphs with nodes, edges, and node properties for semantic querying to represent and store 

data. The key concept of the system is the graph (or edge, or relationship) that is directly 

related to the data elements. Links allow for connecting data to each other directly, and in 

many cases, for retrieving with a single operation. 

This distinguishes graph systems from traditional relational databases, where data 

interconnections are implemented using tables, and complex search queries are resolved by 

combining tables that satisfy elementary queries. Graph databases provide a simple and quick 

extraction of complex hierarchical structures that are difficult to find in relational systems 

[48]. The principle of storing graph databases is constantly changing. Some systems use 

elements of a relational organization, that is, they store graphs in the form of tables, while 

others use the key-value principle or document-oriented concept for data storage, which 

makes them essentially NoSQL structures. 

Extracting data from a graph database requires a special query language other than SQL, 

which was designed for relational databases and is not able to traverse the graph elegantly. 

None of the query languages became universal and conventional, like SQL was for relational 

databases; there is a wide variety of systems that are tightly bound to a particular product. 

However, some standardization efforts were implemented, and it led to the appearance of 

query languages such as Cypher, which can become standard [49, 50]. In addition to the 

existence of query languages, some graph databases are available through API. 

Another example of a nonrelational storage model is HBase [51]. It is designed for work 

with the file system of the distributed operating system Hadoop (HDFS, Hadoop Distributed 

File System). The Hadoop system was specifically designed for work with large data. A 

typical file system consists of a table of file descriptors and a data area. In HDFS, the name 

server (NameNode) is used instead of the table, and the data is distributed to data servers 

(DataNodes). The information about the machines on which the data blocks are located allows 

for running the same computing processes on them and for performing most of the 
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calculations locally, i.e. without data transmission over the network. Just this idea underlies 

the paradigm of MapReduce and its specific implementation in Hadoop. The classic Hadoop 

cluster configuration consists of one name server, one MapReduce wizard (the so-called 

JobTracker), and a set of working machines, each running a DataNode and a TaskTracker. 

Each MapReduce work consists of two stages, separated by data transfer between nodes: 

 The map phase is executed in parallel and (if possible) locally over each data block. 

Instead of delivering terabytes of data to the program, a small, user-defined program is copied 

to the data server and does to them all the operation except for those requiring shuffling or 

moving. 

 The reduce phase completes the map phase with aggregating operations. 

Hbase is a distributed, column-oriented, multi-version "key-value" database, modelled 

after BigTable [52] developed by Google. The data are organized into lines indexed by the 

primary key, referred as RowKey in HBase. For each RowKey key, an unlimited set of 

attributes (or columns) can be stored. Columns are organized into groups of columns, called 

Column Family. When columns share the same patterns of use and are stored together, they 

are united into one Column Family, when they. For each attribute, several different versions 

can be stored. Different versions differ in Timestamp. The records are physically stored in the 

order of sorted RowKey values. In this case, the data corresponding to different elements of 

the Column Family type are stored separately, which allows for reading data only from the 

desired family of columns if necessary. Attributes that belong to the same column group and 

correspond to the same key are physically stored as a sorted list. Any attribute of any key is 

not obligatory, the absence of an attribute does not cause overhead to store empty values. The 

four-dimensional model of HBase data can be formulated as a key-value relationship of the 

following kind: 

<table, RowKey, Column Family, Column, Timestamp>     Value. 

Based on the results of studies on the HBase applicability in bioinformatics for NGS data 

[50], it was recognized that the scalability and reliability of the data-oriented HBase is large 

enough. It has also been shown that this architecture allows for the rapid integration and 

analysis of large and heterogeneous data, using for their storage a small number of tables. 

Visualization 

New NGS technologies of data obtaining in biology open new horizons in the formulation 

of novel ideas and concepts for researchers, but big data are hard for analysis and 

visualization. Visualization plays a key role in the detection of new patterns and trends; the 

lack of specialized representation tools is the limiting factor for data interpretation. 

Since data visualization forms the basis in the interpretation of sequencing data, many 

software developers are engaged in creating software tools for visual analysis of data. These 

developments are more specialized than other NGS data analysis packages; each of them has 

its own visualization object and its range of applicability [47]. Some of them (ngs.plot [53] 

and Integrative Genomics Viewer [54]) allow for the integration of heterogeneous data, such 

as gene annotations, clinical information and phenotypic data, from different sources. Girafe 

[55] can be used to visualize the process of reads aligning with genomic fragments; it is user-

friendly because it works together with the R/Bioconductor package [38]. Bioconductor is a 

large-scale project with open source software that provides many separate packages for 

bioinformatics research. It uses the programming language R, which is cross-platform 

(supports Linux, most UNIX-like systems, Mac OS X and Windows). Despite its ability to 

work with dynamic graphs [56] on web pages, these solutions are not sufficient to manage 

dynamic graphs for big data and sufficient interactivity. 

The main feature of huge data visualization is the need to show many millions of points at 

the screens of monitors with a limited number of pixels. An important technical problem is 

need to interact dynamically with the graphs, for example, to change the type of graph, to 
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zoom in and zoom out, to view and change parameters and instantly get a new picture. In 

addition, the revolution in the genomics technologies and large amount of available data 

increases importance of the teamwork. For NGS analysis, it is usually necessary to have close 

on line cooperation of scientists from different teams and different locations. This 

collaboration is provided by the creation of web applications, which should support the 

increasing potential of the data research intensity. This calls for the use of web technologies 

for data exchange, analysis tools and results through web applications that are accessible from 

the Internet. However, web applications have some technical limitations related to the 

capabilities of modern web browsers. Numerous problems arise when creating web 

applications that include interactive visualization tools for Big Data analysis. For example, 

web browsers cannot support huge interactive graphics and tables with thousands data 

fragments. Thus, developers of web applications for the analysis and visualization of NGS 

data should create solutions supporting large amounts of data and increasing demands of 

scientists in interactivity of their data combined with the limitations and diversity of web 

browsers. 

IT companies have ready-made innovative solutions for visualizing large data developed 

for Business Intelligence applications. In last decades, these products have become 

significantly more powerful and less expensive. Examples include Tibco Spotfire [57] or SAS 

[58] packages, both of which are successfully used now in life sciences and can greatly help 

to visualize investigation of NGS data. The main advantage of these solutions is that they 

offer powerful visualization with numerous types of graphs for data representation and 

provide a high level of interactivity for changing image parameters or scaling. 

METHODS OF ORGANIZING CALCULATIONS WITH LARGE VOLUMES OF 

DATA 

In modern bioinformatics, a large scale analysis of the genomes of systems of different 

complexity, from microorganisms to humans, has become possible. Accumulated data contain 

extremely important new information about yet unknown mechanisms of functioning of these 

codes. However, the amount of generated data is so huge (for example, storing of one 

genomic sequence on a computer storage medium will require hundreds of gigabytes), that 

not only the storage or the transmission of these data becomes a problem, but even greater 

difficulties arise at data processing. The very assembly of the genome from billions of 

sequenced reads is a difficult task, but a solution of applied problems of bioinformatics using 

genomic sequences requires the application of the latest developments of distributed and 

parallel programming. 

Thus, as far as gathering of huge volumes of genomic information is concerned, more 

effective, accurate and specific methods for performing analysis of this heterogeneous 

information, based on modern methods of analyzing large amounts of data, become critical. 

To create them, one can borrow IT solutions that established for big data management and 

analysis in such areas as networked artificial intelligence and business information and 

analytics. 

First of all, these are mathematical and statistical methods of analysis and data processing 

and information retrieving algorithms applicable to huge data sets. These methods include 

advanced Data Mining tools (for example, cluster and regression analysis), natural language 

processing techniques (including tonal analysis), predictive analytics, statistical analysis 

algorithms (such as A/B-testing and time series analysis), machine learning algorithms, and 

others. 

Secondly, these are instrumental and software technical means of information 

technologies, which allow for storing and processing of extremely large amounts of data. The 

main way to solve these problems is to organize distributed computing using a large number 

of computational nodes, most often combined into a parallel computing system [59]. The 

most well-known implementations of the distributed computing model in large parallel 
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clusters of computing nodes include the MapReduce programming platform [60], proposed by 

Google, and the freely distributed Hadoop framework [61], created and maintained by the 

Apache Software Foundation and designed to develop and support the execution of 

distributed computing programs. Hadoop is based on the implementation of the MapReduce 

model for the distributed file system (HDFS), which is designed to store large files distributed 

between the nodes of the computational cluster. Hadoop infrastructure also includes big data 

processing software applications [62], such as Apache Pig, Apache Hive and Apach Spark.  

Apache Pig is a platform for analyzing big data sets that consists of a high-level language 

for expressing data analysis programs, coupled with infrastructure for evaluating these 

programs. The salient property of Pig programs is that their structure is amenable to 

substantial parallelization, which in turns enables them to handle very large data sets. The 

Apache Hive data warehouse software facilitates reading, writing, and managing large 

datasets residing in distributed storage using SQL. Apache Spark is a software framework for 

large-scale distributed processing of unstructured and weakly structured data.  

In addition, there are a large number of commercial implementations of software systems 

based on the technology of different classes, capabilities and destinations offered by large 

vendors, such as IBM or Microsoft, and relatively small companies such as Cloudera, 

Hortonworks, MapR, and others. 

The third component of the technological toolware for processing of big data is 

represented by specialized high-performance hardware/software complexes. These products 

use the paradigm of in-memory analytics, this is a technology that maximize the use of RAM 

for running processing systems, such as IBM's recently announced mainframe z13s [63]. This 

supercomputer, focused on solving problems in the area of big data, has up to 20 eight-core, 

5.0 GHz dedicated processors, super-fast memory with a capacity of up to 10 TB, supports up 

to 8000 virtual servers and has a design maximum performance of more than 111,000 MIPS 

(millions of operations per second). Such specialized supercomputers are also offered by 

other suppliers of solutions such as Teradata, Oracle, SAP, SAS and others. 

Thus, today we have a fairly advanced set of methods for big data analytics, allowing for 

extraction of the necessary knowledge. However, as it was mentioned before, the 

overwhelming number of technologies and methods of work with big data is implemented and 

successfully used almost exclusively in business sectors. 

CONCLUSION 

The revolutionary changes that high-throughput sequencing (NGS) caused in the 

biological sciences contribute to the high-speed emergence of new data. Obviously, big data 

have a variety of formats and are of great interest for different groups of researchers. There is 

no general consensus yet as to what data can be considered big, it is generally believed that 

these are collections of data that are too large to be managed and analyzed using traditional 

approaches. According to this point of view, the scale and method of big data obtaining are 

specific to each research area. Data that are suitable for this definition in biology and 

medicine are generated from numerous sources, including laboratory experiments, and are 

accessible through online databases. Medico-biological big data are the result of fusion of 

small data sources. 

For example, most scientists make the laboratory experiments to study gene expression 

public by depositing them in the ArrayExpress database [64], which is one of three collections 

of results of costly experiments, along with Omnibus in NCBI (USA) and DDBJ Omics 

Archive (Japan). These databases collectively store processed data and metadata describing 

properties of the samples and the technical details of experiments, including raw data and 

protocols of experiments. The raw DNA sequences are placed in the European Nucleotide 

Database (ENA) and immediately access the data collections associated with this resource in 

GenBank and DDBJ. 
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These common big data are profitable, since the cost of obtaining data is shared by many 

laboratories, and could be used by specially developed computing methods. Medico-

biological big data make it possible to develop predictions based on evidence that 

complement hypotheses based on previous knowledge. Since these data are supplied to the 

collection by various research teams from various institutions, and the systems under 

examination are diverse, the discoveries will be more likely to be generalized. 

Big data not only open up new opportunities, but also set new tasks. It becomes necessary 

to adapt training programs on bioinformatics to new realities [65]. It is necessary to develop 

training programs that provide skills for the effective and confident use of big data and to 

critically evaluate the results. 

Problems raised by big data require that training programs prepare students for solving 

problems, including combining data, overcoming computational difficulties and storage 

constraints, the skills of multiple testing of hypotheses, and working with biased and mixed 

data. Data consolidation encompasses the problem of obtaining the necessary data in the 

appropriate format and their normalization in order to make them comparable by sources. 

Computing constraints relate to the difficulties and costs associated with storing, moving, and 

analyzing data. Multiple hypothesis testing refers to the problem of detecting the statistical 

probability of parasitic associations in large sets of data. Discrepancies and inconsistency of 

the data correspond to problems related to what experiments were performed or what 

processes were most often analyzed. 

This area of knowledge is developing rapidly, and the problems formulated here are not 

static, they are also changing rapidly. Scientists working in the field of bioinformatics in the 

era of big data should be able to understand the computing environment and ways of 

analyzing and obtaining of analytical conclusions from large-scale data most effectively in 

this environment. In addition, they must be well versed in the algorithms for assembling 

genomes, in order to choose the most suitable from the vast majority of existing. 

Significant resources are allocated all over the world to prepare scientists for the analysis 

of large-scale data. The US government has allocated $200 million to finance Big Data and 

the NIH Big Data to Knowledge (BD2K) initiative [66]. The Big Data program in particular, 

aims to significantly improve the tools and methods for accessing, organizing and collecting 

data on discoveries associated with huge amounts of digital data.  

The reality is that the use of familiar relational database management systems can no 

longer satisfy the increased data volume loads. The relational database cannot adapt to a large 

number of queries; the volumes of tables needed to implement this model grow too fast for a 

large amount of stored data. The relational model no longer matches the performance 

criterion, since this data model operates large amount of temporary tables in which 

intermediate results are stored. Other large database management systems are necessary to 

meet the increased demands of modern life. 

A big problem is the heterogeneity of data formats and software tools for their processing. 

Each producer of sequencing machines develops, as a rule, its own data format, which makes 

unification of data an urgent task. This situation requires that biologists have a serious level of 

knowledge in programming languages, so that they can use existing scripts or create new ones 

to analyze data and extract useful knowledge. A lot of tools for converting and analyzing data 

are posted on the Internet. All of them are written in different programming languages and are 

designed for various computer platforms. The difficulty lies in understanding the level of 

coordination between different tools and the organization of their workflow, as well as in 

updating and maintaining software. 

New distributed computing technologies are necessary. In the areas of business analytics, 

a number of solutions have already been created that could be applied to bioinformatics. 

These problems could be solved by a new generation of bioinformatics experts. 

New methods of visualization are necessary. These methods will help a human mind to 

comprehend the data of various omics. Therefore, in the era of technology of quick and cheap 
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obtaining of any data, may be working methods should be changed. For example, a concept 

“plurality should not be posited” should become a rule, that is, a researcher should not 

accumulate raw data, but carefully plan research and visualize the results. Visualizing 

designers should be involved at a work process at the stage of its planning but not after the 

experimental data have already been obtained. In such a case, the data structure will be more 

thoughtful and optimal. 

Reflections on the methods of visualization can lead to the development of alternative 

representations for the same data. This may entail the development of other approaches to the 

collection, organization and retrieval of data that contribute to the maximum meaningfulness 

of experimental data, which in turn stimulates intuition, leads to information interactions and 

valuable discoveries. 

Our world has changed, our society has become information-driven, and fully dataflow-

controlled; knowledge and skills are becoming the core values. Big data tools allow us to 

manage resources more efficiently, to anticipate future events, to make informed decisions 

faster. 

In bioinformatics and in computational biology also, amount of data became too large to 

analyze them "in the old fashion," and the speed of their emergence is increasingly growing, 

and the complexity of their analysis is very high because of their specific structure and 

organization. At the same time, the application of big data technologies in bioinformatics, 

biomedicine and health care [67] can only improve, but radically and in a revolutionary 

manner change the situation in this area. However, despite some successes in the development 

of methods of analysis and in the practical application of new technologies for work with big 

data, bioinformatics and biomedicine have a huge untapped potential for their development. 
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