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Abstract. Plasmid pBR322 containing two coding regions in the matrix chain is a 

convenient object to study the DNA nonlinear dynamics that is known to play an 

important role in the processes of transcription, replication, denaturation and 

transmission of structural changes and information along the DNA molecule. The 

aim of the present work is to study by the methods of mathematical modeling the 

dynamics of local conformational distortions – kinks, in the plasmid pBR322. To 

calculate the dynamic characteristics of the kinks, we applied the method of 

McLaughlin-Scott, complemented by the block method. This permitted us to model 

kinks as quasi-particles moving in the potential field of the plasmid. We calculated 

the time dependences of the kink energy, velocity and coordinate. Calculations 

were made for three different values of the initial kink velocity: 150 m/s, 1650 m/s 

and 1879 m/s. The results obtained presented in the form of 3D trajectories and 

their projections, showed that the necessary condition for kink passing the entire 

plasmid is the enough large value of the initial kink velocity: υ  1656.66 m/c 

which is, however, less than the sound velocity (1904.60 m/c). 
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INTRODUCTION 

The DNA molecule is widely considered as a complex dynamic system that has a variety 

of different types of internal motions caused by thermal fluctuations, by collisions with the 

small molecules of the solution or by interactions with proteins. Translational motions of 

individual atoms, solid-like motions of the atomic groups (sugars, bases and phosphate 

groups), complex motions of the whole fragments of the DNA polynucleotide chains to form 

nonlinear conformation distortions of the double helix, are among them. It is believed that 

there is a relation between the DNA internal dynamics and function which is known to be 

determined by the nucleotide sequence and the arrangement of the main functionally 

important regions. To find this relation is one of the most interesting and perspective tasks of 

DNA science. 

In this paper, we pay attention to the movements of small (several base pairs in length) 

distortions of the DNA structure, within which the hydrogen bonds are broken. These 

distortions are named the DNA open states [1]. It is assumed that they play an important role 

in the processes of transcription [2–4], replication [5, 6], denaturation [7–9], as well as the 

transfer of structural changes and information along the DNA molecule [10]. The role of the 
                                                           
*
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dynamic properties of the open states in the prediction of bacterial promoters has been 

recently considered by [11]. 

The DNA open states are often modeled by kinks which are one-soliton solutions of the 

sine-Gordon equation [12–15]. Recent advances in the studies of the kinks dynamics are 

associated with the McLaughlin-Scott equation [16], well known in nonlinear physics and 

successfully applied for homogeneous synthetic DNA [17], and the block method [18] that 

allows extending the McLaughlin-Scott approach to the case of heterogeneous sequences [19–

21].  

In this paper, we apply both methods for modeling dynamics of kinks in the plasmid 

pBR322 that is a small circular DNA widely used in the gene research, and its components 

are applied to create new instrumental plasmids [22]. The nucleotide sequence of the plasmid, 

the arrangement of the main functionally important regions in the sequence and its functional 

properties are well known [23]. However, nothing is known about the internal dynamics of 

this plasmid, although it could be assumed that the small size and the presence of two coding 

regions in the matrix chain make the plasmid pBR322 a convenient object for studying the 

DNA internal mobility. 

In the next section we describe shortly the pBR322 sequence and the methods to study the 

internal dynamics of the plasmid. Then we present the results of calculations of the energy 

profile of the sequence as well as the time dependences of the kink energy, velocity and 

coordinate for three different values of the initial velocity: 150 m/s, 1650 m/s and 1879 m/s. 

In the final section we discuss the approach applied, the obtained results and the conditions 

for kink passing the entire plasmid.  

MATERIALS AND METHODS 

As we mentioned above the plasmid pBR322 is a convenient object to study the DNA 

nonlinear dynamics. Schematic representation of the plasmid is shown in Fig. 1,a. The linear 

version of the scheme that is obtained by cutting the circular DNA at the point S (located at 

the middle of the unique EcoRI site) is shown in Fig. 1,b. The nucleotide sequence of the 

plasmid pBR322 (Genbank accession number J01749.1) is completely deciphered [23]. In 

particular, it is known that the main chain of the plasmid contains two coding regions CDS-1 

and CDS-2 with coordinates (86...1276) and (1915…2106), respectively, and the 

complementary chain contains one coding region CDS-3 with coordinates (3293…4153). 

 

 
Fig. 1. Schematic picture of the plasmid pBR32 (a) and its linear analogue (b). S is the cut point. The 

coding regions CDS-1, CDS-2 and CDS-3 are indicated in black. The CDS-1 and CDS-2 regions are 

located in the main polynucleotide chain, and the CDS-3 region is located in the complementary chain. 
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Theoretical model and methods used  

To model the kink movement in the plasmid, we use the McLaughlin-Scott equation [16] 

adapted for homogeneous DNA in [17]: 

2
( ) ( )

( ) 1k k
k

d t t
t

dt I C

    
     

   

.     (1) 

This equation determines the velocity of the kink ( )k t . Here 2R   ,   is the coefficient 

of dissipation, R is the distance between the center of mass of the base and the nearest sugar-

phosphate chain, I is the moment of inertia of the base, 2 1/2( / )C K a I is the sound velocity 

in DNA, K   is the torsion rigidity of the sugar-phosphate chain, a  is the distance between the 

nearest base pairs. 

The solution of Eq. (1) has the form [17]: 
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where υ0 is the value of the kink velocity at the initial time 0t , 2 1/2

0 0(1 / )C    . 

In our calculations, we use also the solution for the kink coordinate [19]: 
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0 0 0 0( ) arcsinh exp ( ) arcsinhk

I I
z t z C t t C

C I C

      
          

     
  (3) 

and the formula for the total kink energy: 
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Here 0 8E K V  is the rest energy of the kink, V is the parameter that characterizes 

interaction between bases in pairs, z0 is the kink coordinate at the initial time 0t .  

To extend the applicability of Eq. (1) and formulas (2)–(4) to inhomogeneous sequences, 

we use the block method. In accordance with the method, we divide the main sequence of the 

plasmid pBR322 into several regions (blocks). As can be seen from Fig. 1b, the number of the 

blocks in the case of the pBR322 sequence is equal to five: two coding regions (CDS-1 and 

CDS-2) and three intermediate regions with coordinates: (1..85), (1277..1914) and 

(2107..4361). Then we assign the numbers to the blocks, as shown in Fig. 2. 

 

 

Fig. 2. The blocks numbering in the main chain of the plasmid pBR322. 

 

The data on the structure of each of these blocks are presented in Table 1 where ( )iN  is 

the total number of bases in the i-th block, ( )i

AN  is the number of adenines in the i-th block, 
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( )i

TN  is the number of thymines in the i-th block, ( )i

GN  is the number of guanines in the i-th 

block, ( )i

CN  is the number of cytidines in the i-th block, i = 1, 2, 3, 4, 5.  

 
Table 1. The details of the block structure of the pBR322 sequence 

Block 

number 

Block 

coordinates 
( )i

AN  ( )i

TN  ( )i

GN  ( )i

CN  ( )iN  

1 (1..85) 597 584 573 586 2340 

2 (CDS-1) (86..1276) 190 268 353 380 1191 

3 (1277..1914) 142 145 160 191 638 

4 (CDS-2) (1915..2106) 54 37 48 53 192 

5 (2107..4361) 597 584 573 586 2340 

 

In the case of homogeneous sequence, the coefficients of Eq. (1) are constants. In the case 

of heterogeneous sequence, the coefficients depend on the nucleotide sequence. To take into 

account this dependence with the help of the block method, we average the main DNA 

parameters within each of the blocks: 
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   (5) 

where ( )i

jC  is the concentration of nitrous bases of the j-th type in the i-th block 

(j = A, T, G, C). The values of the parameters presented in the right-hand parts of formulas 

(5) are shown in Table 2.  

 
Table 2. Parameters of DNA [13] 

Type of the 

base 

4410iI
  

(kg∙m
2
) 

2010iV   

(J) 

1810iK    

(J) 

3410i

   

(J∙s) 
A 7.61 2.09 2.35 4.25 

T 4.86 1.43 1.61 2.91 

G 8.22 3.12 2.27 4.10 

C 4.11 2.12 1.54 2.79 

 

The results of the averaging are presented in Table 3. 

 
Table 3. The averaged coefficients of Eq. (1) 

Block 

number 

Block 

coordinates 

( ) 4410iI   

(kg∙m
2
) 

( ) 2010
i

V 

 (N/m) 

( ) 1810iK    

(N∙m) 

( ) 3410i    

(J∙c) 

1 (1..85) 6.19 2.18 1.94 3.51 

2 (CDS-1) (86..1276) 6.05 2.26 1.90 3.44 

3 (1277..1914) 6.09 2.21 1.92 3.47 

4 (CDS-2) (1915..2106) 6.26 2.23 1.96 3.55 

5 (2107..4361) 6.19 2.18 1.94 3.51 

 

Taking into account the relations (5) we can write formulas determining the kink velocity, 

coordinate and total energy in each of the five blocks, in the following form: 

 

https://www.ncbi.nlm.nih.gov/nuccore/J01749.1?from=1915&to=2106&sat=4&sat_key=45319260
https://www.ncbi.nlm.nih.gov/nuccore/J01749.1?from=1915&to=2106&sat=4&sat_key=45319260
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where ( )

0

i  is the initial velocity of the kink in the i-th block, ( ) ( ) 2 ( ) 1/2( / )i i iC K a I  is the 

sound velocity in the i-th block, a = 3.4 × 10
–10

 m is the distance between base pairs, 0it  is the 

start time of the motion of the kink on the i-the block, ( )

0

iz  is the kink coordinate at 0it , i = 1, 

2, 3, 4, 5.  

To obtain the time dependences of the kink velocity, coordinate and total energy within 

the whole sequence of the plasmid, it is necessary to “stitch” the solutions (6)–(8) at the 

boundaries between the blocks. If we suggest that at the crossing the boundaries the loss of 

the kink energy is absent, the “stitching” is reduced to a simple equalization of the total kink 

energy to the left and to the right of the boundary. 

RESULTS AND DISCUSSION 

Energy profile of the plasmid pBR322 

If the initial kink velocity is less than the velocity of sound in DNA, the total energy (8) 

can be expanded in a series in the small parameter  ( ) ( )( ) /i i

k t C  
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. 

So, in this context the rest energy ( )

0

iE  can be interpreted as a potential energy of the kink in 

the i-th block.  

To construct the energy profile of the plasmid pBR322, we calculated the rest energy of 

the kink ( ) ( ) ( )

0 8i i iE K V  for each of the blocks. When making the calculations, it was taken 

into account that the plasmid has the form of a ring, and therefore for the 1-st and 5-th blocks 

the coefficients averaged over the combined block 5 + 1 were used. The results of the rest 

energies calculations are presented in Table 4. 

 
Table 4. Kink rest energy, calculated for each of the five blocks  

Block number 
( ) 20

0 10iE   (J) 

1 164.82 

2 (CDS-1) 165.71 

3 164.66 

4 (CDS-2) 167.35 

5 164.82 
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With the help of the data from Table 4 we constructed the energy profile of the main 

sequence of the plasmid (Fig. 3). The horizontal scale shows the coordinates of the nitrogen 

bases in the units of base pairs (bp), 1 bp = 3.4 × 10
–10

 m. Having the energy profile of the 

plasmid, we got the opportunity to transform the problem of the kink movement in the 

plasmid to the problem of the movement of a quasi particle in the potential field with the 

obtained energy profile. 

 

 

Fig. 3. Energy profile of the plasmid pBR322. 

 

As it can be seen from Fig. 3, the energy profile contains two barriers that correspond to 

the coding regions CDS-1 and CDS-2. This allows us to suggest that the behavior of the kink 

in the plasmid pBR322 in many respects is similar to the behavior of a quasi particle and is 

determined by whether the kink can overcome the barriers or not, and the latter will depend 

on the initial velocity of the kink. 

Kink velocity in the plasmid pBR322  

To construct the graphs of the time dependence of the kink velocity, we have used 

formula (6), the parameters from Table 3 and the conditions of “stitching” described above. 

Calculations were carried out for three values of the initial kink velocity: 150 m/s, 1650 m/s 

and 1879 m/s, although it should be noted that the algorithm described above is valid for any 

values of the initial kink velocities which are less than the sound velocity in the first block 

( (1)C = 1904.60 m/s).  

These three model values were selected as follows. Preliminary we made estimations of 

the two minimum values of the initial kink velocities necessary to overcome the first and 

second energy barriers. The minimum initial kink velocity necessary to overcome the first 

barrier was calculated using the formula: 
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The result obtained was equal to (first),min

0  = 359.20 m/s. We name it the first minimum value 

of the initial velocity. 

Formula (9) has been obtained as follows. At the beginning, we found the minimum kink 

velocity to the left of the 1-st boundary (first),min

end . It was done by equating the total kink 

energy to the left of the boundary and the minimum kink energy (i.e. the kink rest energy) to 

the right of this boundary: 

(1) (1)
(first ),min (1)

end (2) (2)
1

K V
C

K V
   .   (10) 

On the other hand, the velocity (first),min

end  can be obtained in another way. To do this, we 

took formula (6) and rewrote it for the case considered: 
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Here min

1t  is the right boundary of the first time interval. The value of min

1t  is determined by 

the formula: 
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which is easily derived from (7). Inserting this formula for min

1t  into (11) we find formula for 
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Then, by equating formulas (10) and (12) we obtained the desired formula (9). 

Using a similar formula 
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we obtained the second minimum value of the initial kink velocity ( (second),min

0  = 1656.66 m/s) 

that is necessary to overcome the other energy barrier. 

Considering these two estimations, we selected up the first model value of the initial 

velocity (150 m/s), so that it was less than the first minimum velocity ( (first),min

0 = 359.20 m/s). 

In this case, it can be expected that the kink will stop within the 1-st block, not reaching the 

coding region CDS-1.  
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The second model value of the initial velocity (1650 m/s), was chosen so that it was 

greater than the first minimum velocity ( (first),min

0  = 359.20 m/s), but less than the second 

minimum velocity ( (second),min

0  = 1656.66 m/s). In this case, kink will overcome the first 

energy barrier (CDS-1), but will not reach the second barrier (CDS-2). 

The third model value of the initial velocity (1879 m/s) was chosen so that it was greater 

than the second minimum velocity ( (second),min

0 = 1656.66 m/s), but less than the sound velocity 

( (1)C  = 1904.60 m/s). It can be expected that in this case the kink will overcome both the first 

(CDS-1) and the second (CDS-2) energy barriers.  

The results of calculating the time dependence of the kink velocity are shown in Fig. 4. 

 

 

Fig. 4. Time dependence of the kink velocity in the plasmid pBR322. The curves 1, 2 and 3 correspond to 

initial velocities of 150 m/s, 1650 m/s and 1879 m/s, respectively. 

 

The three curves in Fig. 4 show the decrease of the kink velocity that is explained by 

effects of dissipation. The smooth curve 1 corresponds to the case when the initial kink 

velocity is small and kink stops inside the 1-st block. The curve 2 has two zigzags: one 

unnoticeable zigzag with the negligibly small change of the kink velocity equal to ~ 2 m/c at 
end,1650

1t  = 1.77 × 10
–11

 s (this time corresponds to the moment of crossing the boundary 

between the 2-nd and 3-rd blocks) and one noticeable zigzag with the change of the kink 

velocity equal to ~ 183 m/c at end,1650

2t  = 7.99 × 10
–10

 s (this time corresponds to the moment of 

crossing the boundary between the 2-nd and 3-rd blocks). The curve 3 has four zigzags: one 

unnoticeable zigzag with the negligibly small change of the kink velocity changes equal to 

~ 1 m/c at end,1879

1t  = 1.54 × 10
–11

 s (this time corresponds to the moment of crossing the 

boundary between the 1-nd and 2-nd blocks), one unnoticeable zigzag with the negligibly 

small change of the kink velocity changes equal to ~ 7 m/c at end,1879

2t  = 2.43 × 10
–10

 s (this 

time corresponds to the moment of crossing the boundary between the 2-nd and 3-nd blocks), 

one noticeable zigzag with the change of the kink velocity changes equal to ~ 50 m/c at 
end,1879

3t  = 4.10 × 10
–10

 s (this time corresponds to the moment of crossing the boundary 

between the 3-nd and 4-nd blocks) and one noticeable zigzag with the change of the kink 

velocity changes equal to ~ 76 m/c at end,1879

4t  = 4.96 × 10
–10

 s (this time corresponds to the 

moment of crossing the boundary between the 4-nd and 5-nd blocks). Thus, our assumption 

that the kink behavior is determined by whether the kink is able to overcome the energy 

barriers or not, and that the overcoming of the barriers depends on the initial kink velocity, is 

fully confirmed. 
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Kink coordinates in the plasmid pBR322  

Formula (7) and parameter values from Table 3 have been used to calculate the time 

dependence of the kink coordinate for three values of the initial velocity: 150 m/s, 1650 m/s 

and 1879 m/s. The results of the calculation are presented in Fig. 5. 

 

 
 

Fig. 5. Time dependence of the kink coordinate in the plasmid pBR322. The curves 1, 2 and 3 correspond 

to initial velocities of 150 m/s, 1650 m/s and 1879 m/s, respectively. 

 

In Fig. 5 all three curves smoothly grow and reach the stationary values corresponding to 

the points of the kink stop. We calculated the coordinates of these points for different values 

of the initial kink velocity. The results are: (1),stop,150

0z  = 77 bp, (1),stop,1650

0z  = 1368 bp and 
(1),stop,1879

0z  = 2477 bp. From Fig. 5 it can be seen that the greater the initial kink velocity, the 

more path of the kink till the complete stop. 

 

Kink total energy in the plasmid pBR322  

 

To construct the time dependence of the total energy of the kink for different values of 

the initial velocity, we used formula (8) and parameter values from Table 3. 

 

 
 

Fig. 6. Time dependence of the total energy of the kink in the plasmid pBR322. The curves 1, 2 and 3 

correspond to initial velocities of 150 m/s, 1650 m/s and 1879 m/s, respectively. 

 

The three curves shown in Fig. 6 gradually decrease with time and reach the values equal 

to the kink rest energies 164.82 × 10
–20

 (J), 164.66 × 10
–20

 (J) and 164.82 × 10
–20

 (J). 
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Kink trajectories on the phase plane 

To calculate kink trajectories on the phase plane { , z }, it is convenient to rewrite 

equation (1) in the form of the two coupled ordinary differential equations for the velocity and 

coordinate of the kink: 
( )

( )( )
( ),

i
ik

k

d z t
t

dt
        (14) 

2
( ) ( )( )

( )

( ) ( )

( ) ( )
( ) 1 ,

i ii
ik k

ki i

d t t
t

dt I C

   
    
   

    (15) 

where index i denotes the number of the block (i = 1, 2, …5). Results of numerical 

calculations of the kink trajectories in each of the blocks and of “stitching” the obtained 

solutions at the boundaries between the blocks are shown in Fig. 7. 

 

 
 

Fig. 7. Kink trajectories on the phase plane { , z }. The curves 1, 2 and 3 correspond to initial velocities 

of 150 m/s, 1650 m/s and 1879 m/s, respectively. 

 

It is interesting to note that the phase trajectories shown in Fig.7, demonstrate the same 

behavior as those obtained in Fig. 4. Indeed, the curve 1 is smooth, the curve 2 has one 

noticeable zigzag at z = 1277 bp and the curve 3 has two noticeable zigzags at z = 1915 bp 

and at z = 2107 bp.  

CONCLUSIONS 

In the present work, we investigated the dynamic behavior of local conformational 

distortions – kinks, in the plasmid pBR322 by the methods of mathematical modeling. In 

comparison with other studies, our approach has two advantages. First, we considered the 

internal dynamics of the pBR322 sequence that has not been considered before. Second, 

instead of the quasi-homogeneous approximation we applied the block method that gave a 

possibility to take into account the arrangement of the CDS regions in the sequence.  

We calculated the energy profile of the pBR322 sequence having two energy barriers 

(CDS-1 and CDS-2), and interpreted the movement of the kinks in the plasmid as the 

movement of a quasi particles in the potential field with this profile. In the earlier approaches 

based on the quasi-homogeneous approximation, there was not a possibility to obtain any 

profile.  
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To model the structure of the pBR322 sequence, we used five blocks. However, the 

number of the blocks can be increased to take into account more details of the sequence 

structure. When doing this, it is necessary to keep in mind one important condition. The block 

size should exceed the size of the kink, i.e. the block length should be more than 10–15 bp.  

We calculated the main characteristics of the kink movement: the time dependences of the 

kink velocity, coordinate and total energy for three values of the initial velocity: 150 m/s, 

1650 m/s and 1879 m/s, which were chosen to avoid the reflections from the energy barriers 

(CDS-1 and CDS-2). Our assumption that kink behavior is determined by whether the kink is 

able to overcome the energy barriers or not, and that the overcoming of the barriers depends 

on the initial kink velocity has been fully confirmed. We found also that the necessary 

condition for kink passing the entire plasmid was the enough large value of the initial kink 

velocity:    1656.66 m/c. 

Despite the fact that we have considered here only three values of the initial kink velocity, 

the approach proposed can be applied to any values of the initial kink velocity. Only one 

requirement should be fulfilled: the initial kink velocity should be less than the DNA sound 

velocity. This condition arises from mathematical requirements of the existence and stability 

of the solution in the form of kink. 

We would like to note that the obtained results on the kink velocity, coordinates and phase 

trajectories can be presented in a more compact and convenient form of 3D trajectories as it is 

shown in Fig. 8. 

 
 

Fig. 8. 3D trajectories of the kinks in the plasmid pBR322. The curves 1, 2 and 3 correspond to initial 

velocities of 150 m/s, 1650 m/s and 1879 m/s, respectively. 

 

This presentation permits to interpret the results shown in Fig. (4), (5) and (7) as the 

projections of the kink 3D trajectories on the planes { , t }, { ,z t } and { , z }, respectively. 

It should be noted, however, that these results on the kink dynamics were obtained under 

two additional constraints. First, we used a simplified model that took into account the 

mobility of the nitrous bases in one of the two polynucleotide chains of DNA, the second 

chain being modeled only as an average field. Second, to calculate the dynamic characteristics 

of the kink, we used the McLaughlin-Scott equation which is valid only for the case of small 

dissipation. In spite of these limitations, we expect that the results obtained by simple and 

convenient block method, as well as by McLaughlin-Scott equation, correctly convey the 

basic laws of the kink dynamic behavior in plasmid pBR322 and can be applied to another 

DNA sequences. 



YAKUSHEVICH, KRASNOBAEVA 

338 

Mathematical Biology and Bioinformatics. 2019. V. 14. № 1. doi: 10.17537/2019.14.327 

REFERENCES 

1. Englander S.W., Kallenbach N.R., Heeger A.J., Krumhansl J.A., Litwin A. Nature of 

the open state in DNA structure. Proc. Natl. Acad. Sci. 1980. V. 77. P. 7222–7226.  

2. Clark D., Pazdernik N. Biotechnology. 2nd Edition. Academic Cell, 2015. 

3. Zuo Y., Steitz T.A. A structure-based kinetic model of transcription. Transcription. 

2017. V. 8. P. 1–8. doi: 10.1080/21541264.2016.1234821. 

4. He Y., Yan C., Fang J., Inouye C., Tjian R., Ivanov I., Nogales E. Near-atomic 

resolution visualization of human transcription promoter opening. Nature. 2016. V. 533. 

P. 359–365. doi: 10.1038/nature17970. 

5. Bailey L.J., Doherty A.J. Mitochondrial DNA replication: a PrimPol perspective. 

Biochem Soc Trans. 2017. V. 45. P. 513–529. doi: 10.1042/BST20160162. 

6. Bleichert F, Botchan M.R., Berger J.M. Mechanisms for initiating cellular DNA 

replication. Science. 2017. V. 355. P. 215–222. doi: 10.1126/science.aah6317. 

7. Sicard F., Destainville N., Manghi M. DNA denaturation bubbles: Free-energy 

landscape and nucleation/closure rates. J. of Chemical Physics. 2015. V. 142. P. 903–

910. doi: 10.1063/1.4905668. 

8. Shi C., Shang F., Zhou M., Zhang P., Wang Y., Ma C. Triggered isothermal PCR by 

denaturation bubble-mediated strand exchange amplification. Chem. Commun. 2016. V. 

52. P. 11551–11554. doi: 10.1039/C6CC05906F. 

9. Singh A.R., Granek R. Manipulation of double-stranded DNA melting by force. Phys. 

Rev. E. 2017. V. 96. P. 032417–032422. doi: 10.1103/PhysRevE.96.032417. 

10. Dwiputra D., Hidayat W., Zen F.P. Nonlinear dynamics of DNA bubble induced by site 

specific DNA-protein interaction. J. Phys.: Conf. Ser. 2017. V. 856. P. 012005–012009. 

doi: 10.1088/1742-6596/856/1/011001. 

11. Ryasik A., Orlov M., Zykova E., Ermak T., Sorokin A. Bacterial promoter prediction: 

Selection of dynamic and static physical properties of DNA for reliable sequence 

classification. J. Bioinf. Comput. Biol. 2018. V. 16. P. 1840003. doi: 

10.1142/S0219720018400036. 

12. Salerno M. Discrete model for DNA-promoter dynamics. Phys. Rev. A. 1991. V. 44. 

P. 5292–5297. 

13. Yakushevich L.V., Krasnobaeva L.A., Shapovalov A.V., Quintero N.R. One- and Two-

Soliton Solutions of the Sine-Gordon Equation as Applied to DNA. Biophysics. 2005. 

V. 50. P. 450–455. 

14. Derks G., Gaeta G. A minimal model of DNA dynamics in interaction with RNA-

polymerase. Physica D: Nonlinear Phenomena. 2011. V. 240. P. 1805–1817. doi: 

10.1017/S0956792511000301. 

15. Traverso J.J., Manoranjan V.S.,
 

Bishop A.R., Rasmussen K., Voulgarakis N.K. 

Allostery through protein-induced DNA bubbles. Sci. Rep. 2018. V. 5. P. 9037–9043. 

doi: 10.1038/srep09037. 

16. McLaughlin D.W., Scott A.C. Perturbation analysis of fuxon dynamics. Phys. Rev. A. 

1978. V 18. P. 1652–1658. 

17. Yakushevich L.V., Krasnobaeva L.A. Effects of dissipation and external fields on the 

dynamics of conformational distortions in DNA. Biophysics. 2007. V. 52. P. 237–243. 

18. Grinevich A.A, Ryasik A.A, Yakushevich L.V. The dynamics of polynucleotide chain 

consisting of two different homogeneous sequences, divided by interface. Computer 

Research and Modeling. 2013. V. 5. P. 241–253. 

19. Grinevich A.A., Ryasik A.A., Yakushevich L.V. Trajectories of DNA bubles. Chaos, 

Solitons & Fractals. 2015. V. 75. P. 62–75. doi: 10.1016/j.chaos.2015.02.009. 

20. Yakushevich L.V., Krasnobaeva L.A. Trajectories of the DNA kinks in the sequences 

containing CDS regions. Mathematical Biology and Bioinformatics. 2017. V. 12. P. 1–

13. doi: 10.17537/2017.12.1. 

https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Nanette+J.+Pazdernik&search-alias=books&field-author=Nanette+J.+Pazdernik&sort=relevancerank
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zuo%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=27656764
https://www.ncbi.nlm.nih.gov/pubmed/?term=Steitz%20TA%5BAuthor%5D&cauthor=true&cauthor_uid=27656764
https://www.ncbi.nlm.nih.gov/pubmed/27656764
https://doi.org/10.1080/21541264.2016.1234821
https://www.nature.com/articles/nature17970#auth-1
https://www.nature.com/articles/nature17970#auth-2
https://www.nature.com/articles/nature17970#auth-3
https://www.nature.com/articles/nature17970#auth-4
https://www.nature.com/articles/nature17970#auth-5
https://www.nature.com/articles/nature17970#auth-6
https://www.nature.com/articles/nature17970#auth-7
https://doi.org/10.1038/nature17970
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bailey%20LJ%5BAuthor%5D&cauthor=true&cauthor_uid=28408491
https://www.ncbi.nlm.nih.gov/pubmed/?term=Doherty%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=28408491
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390496/
https://doi.org/10.1042/BST20160162
https://doi.org/10.1126/science.aah6317
http://aip.scitation.org/author/Sicard%2C+Fran%C3%A7ois
http://aip.scitation.org/author/Destainville%2C+Nicolas
http://aip.scitation.org/author/Manghi%2C+Manoel
https://doi.org/10.1063/1.4905668
http://pubs.rsc.org/en/results?searchtext=Author%3AChao%20Shi
http://pubs.rsc.org/en/results?searchtext=Author%3AFanjin%20Shang
http://pubs.rsc.org/en/results?searchtext=Author%3AMeiling%20Zhou
http://pubs.rsc.org/en/results?searchtext=Author%3APansong%20Zhang
http://pubs.rsc.org/en/results?searchtext=Author%3AYifan%20Wang
http://pubs.rsc.org/en/results?searchtext=Author%3ACuiping%20Ma
https://doi.org/10.1039/C6CC05906F
https://journals.aps.org/search/field/author/Amit%20Raj%20Singh
https://journals.aps.org/search/field/author/Rony%20Granek
https://doi.org/10.1103/PhysRevE.96.032417
https://doi.org/10.1088/1742-6596/856/1/011001
https://doi.org/10.1142/S0219720018400036
https://doi.org/10.1142/S0219720018400036
Краснобаева/10.1017/S0956792511000301
https://www.ncbi.nlm.nih.gov/pubmed/?term=Traverso%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=25762409
https://www.ncbi.nlm.nih.gov/pubmed/?term=Manoranjan%20VS%5BAuthor%5D&cauthor=true&cauthor_uid=25762409
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bishop%20AR%5BAuthor%5D&cauthor=true&cauthor_uid=25762409
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rasmussen%20K%26%23x000d8%3B%5BAuthor%5D&cauthor=true&cauthor_uid=25762409
https://www.ncbi.nlm.nih.gov/pubmed/?term=Voulgarakis%20NK%5BAuthor%5D&cauthor=true&cauthor_uid=25762409
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356955/
https://doi.org/10.1038/srep09037
https://doi.org/10.1016/j.chaos.2015.02.009
https://doi.org/10.17537/2017.12.1


PLASMID pBR322 AND NONLINEAR CONFORMATIONAL DISTORTIONS (KINKS) 

339 

Mathematical Biology and Bioinformatics. 2019. V. 14. № 1. doi: 10.17537/2019.14.327 

21. Yakushevich L.V., Krasnobaeva L.A. Analytical approaches for exploration of the 

dynamics of genes having one coding region. Biophysics. 2018. V. 63. P. 41–53. doi: 

10.1134/S0006350918010190. 

22. Bolivar F, Rodriguez R.L., Greene P.J., Betlach M.C., Heyneker H.L., Boyer H.W., 

Crosa J.H., Falkow S. Construction and characterization of new cloning vehicles. II. A 

multipurpose cloning system. Gene 1977. V. 2. P. 95–113.  

23. Watson N. A new revision of the sequence of plasmid pBR322. Gene. 1988. V. 70. 

P. 399–403. 
 

 

 

Received 25.03.2019. 

Revised 27.05.2019. 

Published 20.06.2019. 

https://doi.org/10.1134/S0006350918010190
https://doi.org/10.1134/S0006350918010190
https://www.ncbi.nlm.nih.gov/pubmed/344137
https://www.ncbi.nlm.nih.gov/pubmed/344137

