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Abstract. An increase in the power of X-ray sources, in particular, the 

commissioning of X-ray free electron lasers, opens up the possibility of recording 

the diffraction by single macromolecular biological particles. These opportunities 

open the way to weakening, and, ideally, removal, of the main limitation of X-ray 

structure analysis, namely, the need to prepare the sample in the single-crystal 

form. However, the possibility of the practical recording of diffraction by a single 

particle is currently limited to a very low-resolution zone, what is one of the main 

obstacles in the development of this approach. This paper discusses the similarities 

and differences in the study of crystal samples and single particles. It is shown that 

the problem of the determination of the structure of a single particle can be 

formulated as a standard problem of biological crystallography, namely, as the 

problem of retrieval the electron density distribution in some unit cell from the 

magnitudes of its Fourier coefficients. This makes it possible to apply the entire 

range of the methods of biological crystallography to the study of isolated particles. 

At the same time, the possibility of recording continuous diffraction pattern for a 

single particle (as opposed to a discrete set of Bragg reflections in the case of a 

crystal) significantly increases the amount of information derived from the 

experiment. The analytical properties of the continuous diffraction pattern create a 

potential opportunity both to restore the structure factors phases (lost in the 

diffraction experiment), and to extrapolate the experimentally observed pattern 

onto a wider area, which allows to increase the resolution of Fourier syntheses for 

the electron density distribution. 

 

Key words: biological macromolecules, single-particles, X-ray scattering, X-ray free 

electron lasers, phase problem, resolution of Fourier syntheses. 

 

1. INTRODUCTION 

X-ray structure analysis (XRSA) is currently the main experimental method to determine 

the structure of biological macromolecules and their complexes at the atomic level. The 

available programs for experimental data processing and structure determination [1–6] often 

allow one to solve a new structure in "almost automatic" mode. The number of 

macromolecular structures determined by XRSA is estimated to be hundreds of thousands [7]. 

However, the key limitation of the method is the need to prepare a sample of the object under 

study in the form of a single crystal. Obtaining the crystals is a complex, poorly predictable 

procedure. The search for the crystallization conditions can sometimes take years and ends in 

failure. The development of X-ray experiment techniques, in particular, the commissioning of 

X-ray free electron lasers, opens up the potential possibility to remove the requirement of the 

crystallization and use X-ray diffraction methods for determining the structure of a single 

particle [8–13]. By a single particle we mean the sample that does not have internal 

periodicity and is a single copy of the biological object being studied. The examples of single 

particles are macromolecules, macromolecular complexes, viruses, bacterial cells, etc. This 
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paper discusses the similarities and differences of computational problems that arise in studies 

of crystalline samples and isolated particles. 

In this paper we deal with different types of function. To emphasize the type when 

necessary we use superscript cr to mark a periodic function (e.g.  ρcr
r ), superscript sp to 

mark a function with a compact support (e.g.  ρsp
r ), and subscript V to mark a function 

defined to be zero outside the unit cell V, and it's derived functions (e.g.  ρV r ,  VF s , 

 VA r ). 

2. THE BASICS OF THE METHOD 

2.1. X-ray diffraction experiment  

A scheme of the standard diffraction experiment is shown in Figure 1. A primary X-ray 

beam irradiates the sample. We specify the direction of the primary beam by a unit length 

vector 0σ . A detector measures the energy  0 ,E σ σ  or energy-related characteristics of the X-

ray beam propagating from the sample to the detector. Here a unit length vector σ  specifies 

the direction from the sample to the detector. The beams, propagated from the sample to 

detector are usually referred to as reflections. This terminology goes back to the first works on 

the scattering of X-rays by crystals, where the occurrence of scattered rays was interpreted as 

a reflection of the primary beam in the "crystal planes". During the experiment, the direction 

of the primary beam and the detector position change relative to the sample, allowing one to 

measure the energy  0 ,E σ σ  for various combinations of vectors 0σ  and σ . In a real 

experiment in biological crystallography, the direction of the primary beam relative to the 

sample changes due to the rotation of the sample, and the energy of reflections is usually 

recorded by a matrix detector, which represents a matrix (e.g., 1024 × 1024) composed of 

closely spaced individual detectors (with a pitch of 0.2 mm, as an example). This allows one 

to register energy simultaneously for the different directions of the scattering. 

 

 

Fig. 1. The scheme of X-ray diffraction experiment. 

 

2.2. Kinematic theory of diffraction 

The main formulas of the XRSA are derived within the framework of the kinematic theory 

of diffraction, the main statements of which can be formulated as follows. The primary X-ray 

beam is a plane monochromatic electromagnetic wave, under the influence of which the 
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electrons of the sample begin to oscillate. Oscillating electrons become the sources of 

secondary spherical electromagnetic waves. At the detector, the secondary waves coming 

from different electrons superpose forming the diffracted beam. The measured energy is 

proportional to the square of the of the complex amplitude of the summary wave. The solution 

of Newton's equation for motion of an electron in the field of the primary wave and Maxwell's 

equations describing the radiation of an oscillating electron [14, 15] allow to calculate the 

recorded energy as:  

    
2

0 0, ε   .E Eσ σ F s  (1) 

Here, s is the combination of 0σ  and σ  directions scaled to the wavelength  

 0   .
λ



σ σ

s  (2) 

This vector is referred to as the scattering vector and play a significant role in the theory of 

diffraction. In crystallography, the space of scattering vectors is referred to as the reciprocal 

space. The value 0E  is the energy of the primary wave. The complex value F(s) is the Fourier 

transform of the electron density distribution function (r), that describes the distribution of 

electrons in the sample  

      
3

3, ,ρ exp 2π     i dV   r

R

F s r s r s R  (3) 

where the dot · denotes the scalar (dot) product of two vectors. The value  is a combination 

of physical constants and experimental parameters (e.g., the distance from the sample to the 

detector) and does not depend on the structure of the sample. By changing the directions 0σ  

and σ  it is possible to obtain the values of the Fourier transform magnitude F(s) for different 

scattering vectors s in the reciprocal space. We call as the diffraction pattern the set of squares 

   
2

I s F s  of these magnitudes.  

 

 
Fig. 2. Ewald scheme. Scattering vectors s corresponding to the existing reflections form the surface of a 

sphere (Ewald sphere) in reciprocal space (shown in purple). The reflections recorded by the detector 

matrix correspond to a part of this sphere (shown in green) determined by the physical dimensions of the 

detector matrix. The rotation of the object is accompanied by the rotation of the basis {a*, b*, c*}, that 

leads to the change of the position in the reciprocal space of the scattering vectors corresponding to the 

existing and recorded reflections.  
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If the position of the object is fixed, the scattering vectors corresponding to all existing at 

the moment reflections fill the sphere of 1/ radius with the center placed to the reciprocal 

space origin. This sphere is referred to as Ewald sphere (Fig. 2). The scattering vectors 

corresponding to the reflections that cross the detector area fill a part of the surface of Ewald 

sphere. If the corresponding scattering angles are small, it may be assumed that the pattern 

recorded by the detector matrix (the frame or the image) corresponds to a part of a plane in 

the reciprocal space passing through the origin.  

Formulae (1)–(3) provide the solution to the direct problem of the theory of diffraction, 

namely, the prediction of the diffraction pattern   3,  I s s R  supposing that the electron 

density distribution (r) in the object is known. The purpose of the X-ray diffraction study is 

to solve the inverse problem, namely, to retrieve the electron density distribution assuming 

the diffraction pattern is known. At the next stages of the study, the electron density 

distribution found is "interpreted", i.e., is represented as a sum of the contributions of the 

atoms producing the atomic model of the object. The parameters of this model are further 

refined by minimization of the discrepancy between the observed diffraction pattern and one 

derived from the model [16]. 

2.3. The phase problem  

Equation (3) allows to represent the electron density distribution as an inverse Fourier 

transform 

      
3

3ρ exp 2π  ,   .i dV    s

R

r F s s r r R  (4) 

The first obstacle in the calculation of the electron density distribution directly from this 

formula is that the experiment allows to determine only the values of the magnitude F(s) of 

the complex Fourier transform 

       3exp φ  ,    .F i   F s s s s R  (5) 

The retrieval of the lost phase values (s) is a central, the so-called phase problem of XRSA. 

In biological crystallography, this problem is solved either by conducting additional 

experiments with chemically modified compounds (isomorphous replacement method) or a 

series of experiments at different X-rays wavelengths (multiwavelength anomalous diffraction 

method), or using the known structure of the proposed homologue of the object (molecular 

replacement method). 

2.4. Resolution  

The second problem in an attempt to get the electron density distribution by means of (4) 

is that the integration should be performed over the whole three-dimensional space, while the 

observed values  obsF s  are available only for a limited area of space, for example, they may 

be restricted as maxss . In addition, some particular values may not be available due to 

specific features of the experimental setup, for example, reflections of the central zone with 

minss  may not be available. The transformation (4) calculated through a limited region of 

the reciprocal space is called in crystallography the Fourier synthesis of the electron density. 

Fourier syntheses contain distortions, which becomes greater, if the region of the reciprocal 

space included into the calculation of the integral (4) diminishes. The usual types of these 

distortions are "blurring" and a fusion of the electron density peaks, and the appearance of 

waves due to a truncation of the Fourier series. Figure 3 shows electron density syntheses 

calculated for a small protein using data sets of different sizes. 
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The concept of 'resolution' is used to characterize the image quality and amount of data 

used. In macromolecular crystallography this figure corresponds to the size of the smallest 

distinguishable details in the synthesis and is specified in Ångströms. Formally, this 

characteristic is first introduced for an individual Fourier harmonic    exp 2πH i  s r s r . 

The real and imaginary parts of this harmonic considered as functions of the vector r retain 

constant values on the planes perpendicular to the vector s  and change as sine function along 

the direction s. The period of this sine-wave is equal to  

 
1 λ

,
2sinθ

d  
s

 (6) 

and is referred to as the resolution corresponding to the scattering vector s. It is said that a 

data set is assembled or the Fourier synthesis is calculated with the resolution maxs  if all (or 

almost all) reflections with maxss  are included in the calculation of (4). In addition to the 

introduced formal resolution, other concepts of real, optical or effective resolution are used to 

characterize the quality of the Fourier synthesis, which take into account not only the absence 

of some reflections, but also distortions introduced by errors in the values of magnitudes and 

phases [17].  

 

 

Fig. 3. Fourier syntheses of electron density for a small protein molecule (Protein G). The numbers 

specify the resolution and the number of Bragg reflections used to calculate the Fourier series. 

 

2.5. The possibility of experimental recording of the diffraction 

The main obstacle in the practical use of Х-ray diffraction methods is the value of the 

constant ε included in the expression (1). In the case of scattering by a single electron, this 

value can be estimated as 10
–24

. This creates serious problems in attempts to record 

diffraction; in particular, until recently it was almost impossible to register the scattering 

performed by individual protein molecules. The main solution remains still to prepare a 

sample in the form of a single crystal, which plays the role of an amplifier of diffracted 

waves.  
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3. SCATTERING BY A CRYSTAL 

3.1. Mathematical (ideal infinite) crystal 

3.1.1. Crystallographic notations 

For an ideal (mathematical) infinite three-dimensional crystal, the electron density 

distribution  ρcr
r  has three non-coplanar periods {a, b, c}, i.e.,  

         3ρ ρ ρ ρ  ,    .cr cr cr cr      r r a r b r c r R  (7) 

We call the vectors {a, b, c} the basis of the direct space; the coordinates of the vector in this 

(in general, oblique) basis, the relative coordinates; and the lattice R  composed from the 

points with the integer coordinates: 

   ,    , , integer  ,sx y z x y z   a b cR  (8) 

the lattice of the direct space. We define the basis {a
*
, b

*
, c

*
} of the reciprocal space as the 

basis that is conjugate to the basis {a, b, c}, i.e. 

 
1 ,     a a b b c c

* * *  

0 .           a b a c b a b c c a c b
* * * * * *

 
(9) 

We call the coordinates of a point in the reciprocal space basis the Miller indices, and the 

integer lattice 

  * * *a b c  ,    , ,  – integers h k l h k l  R  (10) 

the reciprocal space lattice, or the Bragg lattice. The reflections corresponding to the 

scattering vectors s R  are called the Bragg reflections. If x, y, z) are the relative 

coordinates of the vector r and (h, k, l) are the Miller indices of the vector s, then, the scalar 

product of two vectors can be calculated as hx ky lz   s r . In crystallography, it is 

customary to speak of vectors represented in the coordinates of the basis {a, b, c} as the 

vectors of direct space, while vectors represented by coordinates in the basis {a
*
, b

*
, c

*
} are 

called vectors of the reciprocal space.  

We call the parallelepiped constructed on the vectors {a, b, c} and centered at the origin 

the unit cell V . Let denote as  ρV r  the restriction of the function  ρ r  to the unit cell V, i.e. 

  
 ρ  ,  

ρ  .
0 ,  

cr

V

V

V

 
 



r r
r

r
 (11) 

The set of the Fourier harmonics    exp 2πH i  s r s r , with s R  forms a complete 

orthogonal basis in the space  2L V  of functions defined in the region V, therefore, the 

functions  ρcr
r  and  ρV r  can be represented in V as Fourier series 

        
1

ρ ρ exp i2π  ,    ,cr

V V V
V 

    
s

r r F s s r r
R

 (12) 

where |V| is the unit cell volume, and  

          
3

 ρ exp i2π dV ρ e .xp i2π dV V

V

V    r r

R

F s r s r r s r  (13) 
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For the function  ρcr
r , the presentation (12) is valid for all 3r R , while for  ρV r  it is 

valid in the unit cell only. In crystallography, the complex Fourier coefficients  VF s  are 

referred to as structure factors. It follows from (12) that to determine the crystal structure it is 

sufficient to know structure factors corresponding to Bragg reflections.  

3.1.2. Fourier transform of a periodic function 

For a periodic function the Fourier transform does not exist in the framework of classical 

functions, but may be defined in term of generalized functions (distributions) [18]. The 

periodic electron density distribution  ρcr
r  may be represented as  

     3ρ ρ ρ δ  ,   ,cr

V V

 

    u

u u

r r u r R  
R R

 (14) 

where    δ δ u r r u  is the three-dimensional Dirac -function localized in the point u, and 

the sign   denotes the convolution of two functions. Let apply Fourier transform to both sides 

of identity (14). Using the property of Fourier transform to transform convolution into product 

and the property to transform R -grid of -functions into R -grid, we get  

       3δ δ  ,   .V V

  

   u u

u u

F s F s F u s R
R R

 (15) 

It follows from the last formula that, in the case of the crystal structure, the Fourier 

transform exists only as a generalized function and is equal to zero at points corresponding to 

non-Bragg reflections. At the points corresponding to Bragg reflections, it is the delta-

functions modulated by the values of the corresponding structure factors. Thus, the crystal 

significantly enhances the magnitudes of the Fourier transform of  ρV r  function for Bragg 

reflections. At the same time the values corresponding to non-Bragg reflections are totally 

lost. 

3.2. A finite crystal 

Let consider now a real crystal of finite dimensions. Let Q be a finite set of nodes of the 

lattice R , and the crystal is composed of copies of the unit cell V shifted by different vectors 

u from the set Q. The electron density distribution in the crystal can be represented as 

     3ρ ρ   , V

Q

  
u

r r u r R  ,  
(16) 

instead of (8). In this case, the formula (15) for the Fourier transform of  ρ r  takes the form  

       3 Ω ,  ,V Q F s F s s s R  (17) 

where 

     3Ω exp 2π ,   . Q

Q

i


  
u

s s u s R  (18) 

Accordingly, the intensity of the reflections can be calculated as  

      
22 2

Ω  .V QF s F s s  
(19) 

The function  ΩQ s is the periodical function with the same periods {a
*
, b

*
, c

*
} as the 

lattice of -functions δ  
 

 u

u R

, but is a 'classical' function, and depends on the size and shape of 
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the sample. For all Bragg reflections, the value of this function is the same and equal to the 

number of unit cells in the crystal. If the crystal is a parallelepiped composed from 

x y zN N N   cells, the computation yields  

  
 

 

 
 

 

 

22 2
2

* * *

2 2 2

sin πsin π sin π
Ω  .

sin π sin π sin π

yx z

Q

N kN h N l
h k l

h k l
    a b c  (20) 

For integer h, k, l we have  
22

ΩQ x y zN N N , so that the energy of diffracted waves of the 

Bragg reflections increases  
2

x y zN N N  times in comparison with the single unit cell 

diffraction. For example, if the crystal has the size 0.1 мм and the unit cell has the size of 100 

Å, then, 
410x y zN N N   , i.e. the intensity gain is 10

24
, which makes possible the practical 

registration of scattered rays.  

The identity (19) leads to the several important conclusions: 

 for a finite crystal, Fourier transform of the electron density distribution is 

proportional to the structure factors with a multiplier that depends only on the size and the 

external shape of the sample; 

 for each Bragg reflection, the proportionality coefficient is the same and is equal to the 

number of the cells involved in the scattering; this makes it possible to observe the intensities 

of reflections    
2

VI s F s  in the same, relative scale; 

 for the intermediate (non-Bragg) scattering vectors, the proportionality coefficient 

Q(s) is small and is practically random; this prevents the measurement of the intensities of 

non-Bragg reflections. 

4. SCATTERING BY A SINGLE PARTICLE  

Let consider now the case when the sample is a particle with no strong periodicity. In this 

case, the Fourier transform does not have the shape of -functions, and reflections intensities 

are distributed more smoothly. At the same time, the effect of the strengthening of reflections 

is absent, which makes the task of their measurement extremely difficult. Only in the last 

decade, progress in the development of experimental techniques has made it possible to 

practically obtain X-ray images of isolated particles, both when working with a synchrotron 

accelerator [19] and when using X-ray lasers [20, 21]. 

Electron density distribution for the isolated particle  ρsp
r  is not equal to zero only in 

the limited region M of the space, which we call the molecule region: 

     3supp ρ :   ρ 0   .sp spM    r r R r  (21) 

For an arbitrarily chosen basis {a, b, c}, we define, as before , the unit cell V, the restriction 

 ρV r  of the function  ρsp
r  to the region V, the conjugate basis and the lattices of the direct 

and reciprocal spaces.  

Suppose that the cell V  is chosen large enough so that (with the proper selection of the 

origin and the placement of the center of the cell in it) the entire region of the molecule is 

contained inside the cell  

 .M V  (22) 

In this case, the functions  ρV r  and  ρsp
r  coincide, and the structure factors corresponding 

to  ρV r  coincide with the Fourier transform of the function  ρsp
r   
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            
3

ρ exp 2 ρ exp 2  .V V

V

i dV i dV       r r

R

F s r s r r s r F s  (23) 

As before, the function  ρsp
r  can be represented by Fourier series (12) inside the unit cell. 

However, this representation is not valid outside the region V, where the function  ρsp
r  is 

equal to zero. We define the periodic function  ρcr
r  by the equation (12) for all 3r R . We 

shall call this function the electron density distribution in a virtual crystal with the unit cell V. 

As before, the task is to determine the distribution  ρcr
r  based on the magnitudes of 

structure factors of Bragg reflections. From this point of view, the problem of the 

determination of the spatial structure of a sample from the diffraction pattern of an isolated 

particle is equivalent to the problem of the determination of the crystal structure [22, 23].  

For a single particle (in contrast to the crystal case), it exists a considerable freedom in the 

choice of the unit cell basis {a, b, c} and, correspondingly, the conjugate basis {a
*
, b

*
, c

*
}. 

The latter determines the steps of sampling of the experimental data, and correspondingly, the 

choice of a set of Bragg structure factors  ,  F s s R   . It is only necessary that the condition 

(22) is valid. Let the diameter of the particle is estimated as 
spD , then it is enough to choose a 

cubic unit cell with the edge lengths not less than this diameter. This corresponds to the 

sampling of the continuous diffraction pattern   3 , I s s R  on an orthogonal three-

dimensional grid R  with a step of no greater than 1/ spD  along each axis. Note that there is 

also an experimental restriction on the minimum value of this step determined by the detector 

pixel size. The value of this minimum possible sampling step can be estimated as 

min / λs h L  , where h  is the pixel size, L  is the distance from the sample to the detector, λ  

is the wavelength of the X-ray beam, and it is assumed that / 1h L .  

5. PATTERSON FUNCTION AND AUTOCORRELATION FUNCTION 

5.1. Autocorrelation function 

In contrast to electron density distribution, which requires the knowledge of the both 

magnitude and phase values, the associated autocorrelation function and Patterson function 

require the structure factors magnitudes only and can be calculated immediately from the 

observed information. 

For any function  ρ ρ r , we denote   its enantiomer  

     3ρ  ,     r r r R  ,  (24) 

and define the associated autocorrelation function by  

      
3

3ρ ρ ρ  ,    .A dV     u

R

r u u r r R  (25) 

The Fourier transform of an autocorrelation function is the square of the magnitude of the 

Fourier transform of the distribution (r)  

      
3

2 3exp 2π   ,   .A i dV   r

R

r s r F s s R    (26) 

To illustrate the relation between the autocorrelation function and the corresponding 

electron density distribution, consider the special case, namely an atomized density 
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distribution, which is the sum of the contributions of identical atoms placed at different points 

in space.  

    0

1

ρ  .
N

j

j

g


 r r r  (27) 

Here,   ,  1, ,j j N r  are atomic centers,  0g r  is a peak-like function describing the 

electron density distribution in a single atom placed at the origin, N is the number of atoms in 

the object. In this case, the autocorrelation function is expressed as  

     2

, 1

 ,
N

j k

j k

A g


  r r r r  (28) 

where 2 0 0g g g  , so that the autocorrelation function is the sum of peak-like functions 

centered at the points corresponding to interatomic vectors 
j kr r . Theoretically, the 

complete interpretation of the autocorrelation function, which is the determination of all 
2N  

interatomic vectors  ,  , 1, ,j k j k N  r r , allows one to recover the values of the 

coordinates of the atoms   ,  1, ,j j N r . In the whole, this feature of the autocorrelation 

function remains also in the general case; the maxima of A(r) correspond to the vectors 

between the maxima of the function  ρ r .  

In the case of a single particle, which means that  ρsp
r  function has a bounded support 

the autocorrelation function also has a bounded support. Suppose that the virtual unit cell W is 

chosen to be so large that it contains the support of the autocorrelation function, i.e. 

supp A W . Then,      
2 2

VI  s F s F s , and the autocorrelation function can be 

represented inside the W as a Fourier series 

      
1

exp 2π  ,    ,obsA I i V
W  

   
s

r s s r r
R

 (29) 

where the quantities  obsI s  are directly measured in the diffraction experiment. A sufficient 

condition to satisfy supp A W  is the choice of the unit cell dimensions twice large as the 

object size.  

5.2. Patterson function  

In the case of a crystal sample with the density distribution  ρcr
r , the unit cell cannot be 

chosen arbitrarily large, but is predetermined by the periods {a, b, c}. We define Patterson 

function as the sum of Fourier series  

      
2 31
exp 2π  ,    ,V VP i

V  

   
s

r F s s r r R
R

 (30) 

with  VF s  values defined by (13). The Patterson function can be represented as 

       3ρ ρ ρ   ,    ,cr cr cr

V

r

V

c

VP dV     ur u u r r R  (31) 

where V  stands for period-based convolution of periodic functions defined as (31). In 

contrary to convolution (25), the integration extends here to the unit cell only. 
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If the support of function  ρV r  is so small that the cell contains not only it, but also the 

support of the autocorrelation function  

      
3

3ρ * ρ ρ  ,    ,V V V V VA dV     u

R

r u u r r R  (32) 

then the Patterson function and autocorrelation functions coincide in the unit cell. This 

situation is possible when working with isolated particles, but it is impossible in a real crystal 

due to the dense packing of the molecules. 

 

 

Fig. 4. The autocorrelation function AV(r) and Patterson function PV(r) for one-dimensional crystal 

structure consisting of two atoms. The Patterson function in the unit cell V is the superposition of three 

shifted autocorrelation functions. 

 

Since    ρ ρcr

Vr r  in V, and  ρcr
r  may be presented as 

    ρ ρ  ,cr

V



 
w

r r w
R

 (33) 

it follows from (31) and (33) that  

        
3

ρ ρ  V V V VP dV A
 

      u

w wR

r u u r w r w
R R

. (34) 

Taking into account that the size of the support supp  VA  does not exceed twice the cell size, 

the latter identity has only a small number of members corresponding to the "tails" of the 

autocorrelation function  VA r  in the cells adjacent to V  

     
1

, , 1

 ,    .V V

j k l

P A j k l V


    r r a b c r  (35) 

Therefore, in the case of a crystal structure, the Patterson function is, generally speaking, an 

overlay of 27 shifted copies of the autocorrelation function (32) of the unit cell content. As a 

consequence, the presence of a peak of the Patterson function at the point u does not 

necessarily mean that the function  ρV r  has this interatomic vector, but may mean the 

presence, as an interatomic vector, the vector u shifted by a period of the crystal (Fig. 4). 
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6. INTERPOLATION AND EXTRAPOLATION OF THE OBSERVED DATA  

6.1. Interpolation of observed intensities  

Let the virtual unit cell W  with the basis {a, b, c} be chosen so large that it contains the 

support of the autocorrelation function  

 supp   .A W  (36) 

In this case, the autocorrelation function inside the unit cell can be represented as the Fourier 

series (30), and is equal to zero outside the cell W. Therefore, by restricting the integration 

volume in (26) to the unit cell, substituting expression (30), and calculating the integrals, we 

obtain (taking into account that the center of the cell is the origin) the interpolation formula 

for an arbitrary point 
3u R  

       3 , ,I I
 

  
s

u sinc u s s u R
R

 (37) 

where  

  
sinπ sinπ sinπ

.
π π π

h k l
h k l

h k l

     sinc a b c  (38) 

It follows from this formula that, under condition (36), the intensity value at any point in 

three-dimensional space is a linear combination of the intensities of the Bragg reflections with 

the fixed coefficients (which are independent on the function I(s)). 

Formula (38) plays an important role in the theory of information and is usually associated 

with the names of V. Kotelnikov, E. Whittaker, C. Shannon, and H. Nyquist, although its 

early mention can be found in the mathematical works of E. Borel [24, 25]. The perspectives 

of using this formula in biological crystallography were discussed in the works of D. Sayre 

and G. Bricogne [26–28]. A sufficient condition for (36) is the choice of the cell edges to be 

twice the diameter of the particle, or, equivalently, the sampling step of the experimental data 

should be less than 1/ 2 spD . This step value is often referred to as the Nyquist limit.  

It follows from formula (38) that the knowledge of Bragg reflection intensities with a 

sampling step of 1/ 2 spD  uniquely determines the intensities for all other reflections. 

However, it should be noted that the summation in (38) occurs throughout the complete 

infinite set of reflections. If the intensities of a part of Bragg reflections are unknown or are 

known with an error, the formula becomes approximate only. Then, each observed intensity 

value  obsI u  of the non-Bragg reflections results in the equation linking the unknown values 

of the Bragg reflections  

       ,   ,obsI I


   
s

sinc u s s u u  
R

R  (39) 

and can be used for their determination or refinement [29].  

6.2. Interpolation of structure factors 

An interpolation formula similar to (37) can be written for structure factors as well. Let 

the unit cell satisfies the condition supp ρ  .V  Representing the function  ρV r  inside the 

unit cell V as the Fourier series and then calculating the integral (3) for an arbitrary (non-

Bragg) vector u, we obtain an interpolation formula for the complex structural factors 

       3 ,  .
 

  
s

F u sinc u s F s u R  
R

 (40) 
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Suppose now that the unit cell is chosen to be the smallest possible cell minV  among the 

cells containing inside the support of the function  ρsp
r . Given the measured structure 

factor magnitudes for the grid of the reciprocal space   '

min , obsF s s R  corresponding to 

this cell, the function  ρsp
r  is completely determined in minV , and, hence, in the whole 

space, by the values of the phases   '

minφ  ,  s s R . The presence of the measured structure 

factor magnitude  obsF u  with '

minu R  leads to the equation that links the phase values 

        
'
min

exp φ   .obs obsF i F


   
s

sinc u s s s u
R

 (41) 

Considering similar equations for other non-Bragg reflections, we get a system of equations 

that links the unknown values of structure factor phases. These equations can be used to find 

the phase values of structure factors [30]. It should be noted that, as in the case of intensities, 

reducing in equations (41) the sampling step of non-Bragg vectors to a value less than half the 

edge of the cell minV  leads to a formal complex linear dependence of the coefficients of the 

equations. However, even using only vectors u with half-integer values of at least one of the 

coordinates gives a sevenfold excess of the number of equations (41) over the number of 

phases to be determined.  

An alternative way to use the redundancy of the set of observed magnitudes values for 

solution of the phase problem is an ab initio mask-based approach developed by the authors 

in a series of papers [22, 23, 31–33]. 

6.3. Extrapolation of observed intensities 

The importance of intensities of non-Bragg reflections is emphasized by the fundamental 

Schwartz's–Paley–Wiener theorem, which states that the Fourier transform of a function 

possessing of compact support is an entire holomorphic function. In our case, this, in 

particular, means that setting the function I(s) in an arbitrarily small ball B of the space 3
R  

completely determines its values at all other points. Theoretically, such extrapolation can be 

performed, for example, by a Taylor series constructed at an inner point of the ball. Its 

construction requires partial derivative values that are fully determined by an arbitrarily small 

neighborhood of the decomposition center. The Taylor series converges at any other point due 

to the fact that the function I(s) is the entire function. However, this procedure is difficult to 

implement in practice. The construction of algorithms that allow to effectively extrapolate the 

values of the intensity of reflections to a wider area is a challenge for the methods of 

computational mathematics.  

Two observations should be made. First, the theoretical possibility of an extrapolation of 

the values extends to all vectors 3s R  including vectors beyond the experimentally possible 

resolution /2. This removes the experimental restriction on the potential resolution of the 

results. On the other hand, the possible sampling step of the experimental data is limited from 

the bottom by detector pixel size. Therefore, the extrapolation task could be formulated in a 

narrower sense, namely, to expand the set of known intensities as far as possible, assuming 

that the intensities are known first, for a sufficiently finely sampled limited region B in the 

reciprocal space. 
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7. CONCLUSIONS  

An important stage in the diffraction study of a biological macromolecule is the 

determination of the function that describes the density of the distribution of the scattering 

electrons in the object under study. The study of the full distribution in the three-dimensional 

space may be reduced to the analysis of the 'unit cell distribution' that is equal to zero outside 

a specified parallelepiped referred to as the unit cell. The content of the unit cell is repeated 

periodically in the case of a crystal sample and coincides with the full distribution in the case 

of a single particle. A standard diffraction experiment allows one to determine in a relative 

scale the intensity of reflections, which are the squared magnitudes of the complex 

coefficients (structure factors) in the expansion of the unit cell electron density distribution 

into the Fourier series. Both in a crystal and a single particle cases, the problem of the 

structure determination can be reformulated as the problem of restoring the values of the 

phases of structure factors under the assumption that their magnitudes are known from the 

experiment. The difference is that, in the case of a crystal structure, the unit cell basis (density 

distribution periods) is rigidly defined by the physical characteristics of the crystal and the 

experiment allows one to determine the values of the structure factor magnitudes only for 

reflections that have integer coordinates in the basis conjugated to the cell basis (Bragg 

reflections). In the absence of an additional information about the electron density distribution 

in the cell, all structure factors are mutually independent. The phase values of structure factors 

lost in the experiment are irreplaceable in the sense that they cannot be recovered without 

additional information (experimental or theoretical) about the object.  

In the idealized case of an infinite crystal, the Fourier transform of the periodic electron 

density distribution in the crystal, which determines the diffraction pattern, does not exist 

within the framework of classical functions. But it can be defined in terms of the theory of 

generalized functions and is a Bragg lattice of delta functions modulated by structure factors. 

The situation changes radically for a single particle. In this case, the Fourier transform is an 

entire holomorphic function, which opens up opportunities for recovering the phase part of 

the Fourier transform and expanding the set of the experimentally recorded reflection 

intensities to a wider region. 

The choice of unit cell, in the case of a single particle, is sufficiently arbitrary and must 

only satisfy the requirement that the virtual cell has to be large enough to accommodate the 

object. The set of Bragg reflection phases corresponding to the minimum possible unit cell, 

that still allows to place the object inside, is sufficient to restore the electron density 

distribution in the object. The use of an information about the Fourier transform magnitudes 

of non-Bragg reflections provides an additional information limiting the values of the phases 

of the structure factors of Bragg reflections. This information can be the basis for the recovery 

of unknown phase values. 

An increase in the size of the unit cell means a reduction in the sampling step in the 

continuous diffraction pattern, which leads to an increase in the amount of the experimental 

data involved in the work. This makes it possible to determine the unknown values of the 

phases of the structure factors due to the excess of the set of magnitudes. If the size of the unit 

cell is larger than twice the object size, then the non-Bragg intensities are the linear 

combinations of the Bragg intensities with the predefined (and non-depending on the object) 

coefficients. Nevertheless, if a part of Brag reflections is unknown, but the intensity of some 

non-Brag reflection has been measured, then it leads to equation that links unknown Bragg 

intensities. Such equations may be used to restore the lost Bragg intensities. The choice of the 

unit cell dimensions that exceed twice or more the object size allows to calculate 

autocorrelation function in the unit cell by means of Fourier series, where the observed 

intensities are used as the series' coefficients. 

The analytical properties of the Fourier transform in the case of an isolated particle give 

the theoretical possibility of an unlimited extrapolation of the intensity values from the central 
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zone of the three-dimensional space to the whole space. However, this possibility remains 

purely theoretical for biological crystallography and is currently not supported by working 

algorithms. The development of such algorithms is a challenge for specialists in the field of 

computational mathematics.  
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