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Abstract. The paper studies dynamic modes of discrete-time model of structured
predator-prey community like “arctic fox — rodent” and changing its dynamic
modes due to interspecific interaction. Possibility of shifting dynamic modes is
analyzed. In particularly, 3-cycle emerging in prey population can result in
predator extinction. Moreover, this solution corresponding to an incomplete
community simultaneously coexists with the solution describing dynamics of
complete community, which can be both stable and unstable. The anthropogenic
impact on the community dynamics is studied. Anthropogenic impact is realized as
a harvest of some part of predator or prey population. It is shown prey harvesting
leads to expansion of parameter space domain with non-trivial stable numbers of
community populations. In this case, the prey harvest has little effect on the
predator dynamics; changes are mainly associated with multistability areas. In
particular, the multistability domain narrows, in which changing initial conditions
leads to different dynamic regimes, such as the transition to a stable state or
periodic oscillations. As a result, community dynamics becomes more predictable.
It is shown that the dynamics of prey population is sensitive to its harvesting. Even
a small harvest rate results in disappearance of population size fluctuations: the
stable state captures the entire phase space in multistability areas. In the case of the
predator population harvest, stability domain of the nontrivial fixed point expands
along the parameter of the predator birth rate. Accordingly, a case where predator
determines the prey population dynamics is possible only at high values of predator
reproductive potential. It is shown that in the case of predator harvest, a change in
the community dynamic mode is possible as a result of a shifting dynamic regime
in the prey population initiating the same nature fluctuations in the predator
population. The dynamic regimes emerging in the community models with and
without harvesting are compared.

Key words: discrete-time mathematical model, community, predator-prey, stability,
dynamic modes, age structure, harvest.

INTRODUCTION

Modeling the dynamics of «predator-prey» community is a popular and interesting task:
every year the number of articles on this topic is increasing. Figure 1 presents number
dynamics of papers dealing with «predator-prey community» in Scopus. Searching by key-
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words ( prey AND predator AND model ) gives hundreds of papers, at that research interest
to prey-predator models has significantly increased in the recent decades. Note, that the vast
majority of them uses continuous-time models traditionally.
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Fig. 1. Dynamics of paper number in the citation indexing service Scopus by the key-words (prey AND
predator AND model) (a), among them the articles mentioning “harvest” (b), discrete time and age
structure (c).

In our opinion, this is due to the fact that the first model proposed by Lotka and Volterra
[1, 2] to describe the interaction between a predator and its prey uses differential equations.
Consequently, many researchers continue developing on the basis of the founder’s ideas. The
development of this model by introducing additional terms and searching for new trophic
functions ([3], e.g., Holing [4, 5], Bazykin [6]) provided it the capability of describing
periodic oscillations in the population sizes caused by trophic interactions between species.
Further development of these models followed the path of complication and generalization.
There are stochastic [7—10], continuous [6, 11], algebraic and discrete time [12] modifications
of the Lotka-Volterra model, and each of the modifications describes and takes into account
specific features of interspecies interaction and a biological community development [13].

Equations with delay are often used to take into account the age structure of a
community’s populations in continuous time [14-19], where stage is described as a delay that
corresponds to the time during which individuals of a predator [14-16] or a prey [16, 19]
achieve maturity. As a rule, the age structure of the predator population is considered, since it
is assumed that juvenile predators cannot feed themselves. Some papers describe age structure
of community’s populations using separate equations for each development stage of a prey
[20, 21] or a predator [18, 22]. There are studies examining the influence of factors not related
to the interaction of predator and prey on the community dynamics, for example, cannibalism
[22] or a prey's refuge [21].

The main subjects of study of these models are the system stability [16, 18, 19], the hydra
effect [20], bifurcations [16, 18, 19], the influence of optimal [18] and/or selective harvesting
of prey or predator [18, 22-26]. Note that paper [18] studies the “prey — predator”” model with
stage-structured predator, while the selective harvesting of the predator is considered as a
control parameter. In addition, the series of works [27, 28] merits attention, here differential-
algebraic model of a “predator-prey” community with age structured prey under predator
harvesting is investigated. The authors use a delay to separate in time the processes of feeding
and reproduction in the predator population. They showed that increasing delay results in
destabilizing dynamics of the model and emerging Hopf bifurcation.

Note that the number of studies analyzing the dynamics of “predator-prey” system with
harvesting has increased in the last decade (Fig.1). The harvest process in models with
differential equations is assumed continuous. However, as a rule, harvesting is discrete in time
and is confined to a certain season. Often harvest focuses on catching individuals of a specific
age, which gives the greatest economic benefit [29-32]. Moreover, as a rule, models based on
differential equations describe the processes of feeding and reproduction as interrelated and
continuous ones, i.e. there is a continuous transition of the prey population biomass to the
predator population one. However, many natural species have a pronounced seasonal
breeding. Use of discrete—time models is seemed to be more adequate for describing
dynamics of such populations. In addition, the description of development stages of
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individuals by discrete-time models is also more preferable [5]. However, as Figure 1 shows,
a few papers investigate the dynamics of the predator-prey community with harvest using
recurrent equations. Only the last decade has demonstrated an increasing interest to this
approach.

Note that a number of very interesting papers among the modern studies consider
temporal [33-35] and spatial [36-39] dynamics of prey-predator communities which are
described by discrete-time equations. In particular, methods of the dynamic chaos theory were
used to investigate fluctuations in discrete-time prey—predator systems considering either
various biological effects [36, 39—41] as example «prey switching» [40, 41]. The paper [40]
studies the community “polar bears and ringed seals” with switching between prey stages
within the seal population, using matrix models. Prey switching is a phenomenon in which a
predator disproportionately consumes the most abundant prey type, and switches to consume
another prey type preferentially if the first becomes relatively rare [40]. There is also a very
interesting paper [42], which studies the influence of different predation strategies on the
response of age-structured prey populations to a changing climate. In particular, the study
shows that the changing climate results in prey population fluctuations, while predator
suppresses them. At the same time, ambush predators such as lions are more effective at
suppressing fluctuations in their prey than cursorial predators such as wolves, which chase
down prey over long distances [42].

The dynamics of specific communities is studied, such as host-parasitoid [43, 44] and
plant-herbivore communities [45, 46], a community with age-structured prey [42, 44, 47]. The
work [47] investigates a discrete-time model of a “predator-prey” community with an age-
structured prey. This study showed that if the prey demonstrates chaotic fluctuations, then the
increase in skill of predation can stabilize the prey dynamics, and in the case of large
predation pressure, can transfer the population to another chaotic regime. This is true if the
prey population reproduces, offspring once in a lifetime and its individuals are characterized
by rapid maturation.

In the studies with community under harvesting, we note the following papers [48, 49]
that focus on emerging bifurcations. Thus, [49] shows that a discrete-time "predator-prey"
model with age-structured predator reveals Neimark-Sacker bifurcation and period doubling
one, while the prey harvest stabilizes the community dynamics. The analysis of papers
studying the harvest influence on a structured predator-prey community using discrete-time
equations shows the importance of this field development, since the application of discrete-
time models allows taking into account and describing a number of biological system
features.

This paper continues the study of the discrete-time model of age-structured community of
“predator-prey” describing dynamics of community like “arctic fox-mouse-like rodents” [50—
52]. Given research focuses on analyzing the influence of interaction between species on the
community dynamics. Harvesting impact on the community dynamics modes is also studied.
Dynamic modes of a community model with and without specific harvest of a prey or a
predator are compared.

MATHEMATICAL MODEL OF PREY-PREDATOR COMMUNITY

The community of “arctic fox — rodents” is evident natural example of prey-predator
interaction. Natural populations of arctic foxes (Alopex lagopus) inhabit inland areas depend
on small rodents, mainly voles whose populations are characterized by cyclic fluctuation [53].
Indeed, in years with low food supply, inland fox population demonstrates a very low rate of
reproduction, by contrast, in years when prey species are abundant, number of pups in their
litters is some-fold higher. At that, each species from the community at hand is age-
structured, which is necessary to consider for modeling of the community dynamics.
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A four-component model of prey-predator community dynamics describing the dynamics
of the community “arctic fox — mouse-like rodents” and taking into account seasonality of the
life cycle has been proposed in our previous paper [50]. It takes the form,

~ BETRAQ) . —mxl(n)[l—X“fj;l((”z)]—ﬁm(n)
xl(n+1)—(a1x1<n)[1 —X*+x1(n)j+a2xz(n)) : ,
Xz(n+1)=s-X1(n)£1—%]+v-Xz(n), o
. K)o
D) e LSSl
Y,(n+1) =Yl(n)(1—%j+c-Y2(n),

where n is the reproductive season number. X1 and X» denote the number of first-time
participants in the reproductive process (or underyearlings) and the number of last year’s
participants in reproduction that have survived the winter, respectively (in the prey
population).The variables a1 and a; are their reproductive potentials, s and v are their survival
rates; B1 and B> are the coefficients of limitation characterizing influence of competition
between mature individuals of different ages on the birth rate; oo Y2(n) / (X* + X1(n)) is the
share of the underyearlings’ number consumed by the predator, oo is average number of prey
consumed by unit of predator per an year. Thus, the predator influences the processes of
reproduction, competition and survival in the prey population. Y; and Y are the numbers of
individuals in the juvenile and reproductive part of the predator population, respectively; M is
the carrying capacity or the maximum population number of predator that is sustainable, if it
being exceeded the predator population becomes extinct; ¢ is the survival rate of the mature
individuals of the predator; w is maximal value of predator’s reproductive potential, that is
attainable with unlimited number of the prey. The function Xi(n)/(X*+X1(n)) describes a
dependence of the predator reproductive potential on its satiation defined by the feeding
quality. X* is half saturation constant. Here we use the Holling type 1l functional response:
Xa(n) / (X* + Xa(n))
A substitution of the variables and coefficients,

SBZXl _>X1’ BZXZ _)X27 YllM - yl’ YZ/M _>y2’ al _)rzl.’
sa, >, o,MsB, > a, sB,X*— X", B, /(sB,) = p, (2)
transforms model (1) to a more simple form:
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Y, (n +1) = yl(n)(l_ yl(n)) +C-Y, (n)

Model (3) has three fixed points:

1. A trivial fixed point that corresponds to the extinction of both populations:
{x.=0, x2=0, y,=0, y,=0}
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2. A semi-trivial solution that corresponds to the prey population existence in the absence
of a predator:

{)_(1_ 1_V | rl(l_v)-'-rz}, {)_(2_ 1 I rl(l_V)+r2}! 9120, 92:0.

Cp(l-v)+1 Ty Cp(l-v)+1 Ty

3. A non-trivial fixed point corresponding to the sustainable existence of a predator-prey
community is defined as solving a transcendental equation for x;:

_ 1 1-u)(r(l-v)+r) _  x,(1-u) -— - W+c-1
Xl(l—U)[p+1_Vj=|n( )(;_(—V ) 2); XZZlJF—V)’ Y. :W'yzayz = W2 )
where 1—u=1—°f'—y_2,W=w *Xl, :
X + X1 X +X1

Our previous studies [51, 52] present conditions for existence and stability of these fixed
points. The papers show system (3) reveals transcritical, period doubling and Neimark-Saker
bifurcations. Consequently, the model trajectories can be periodic, quasiperiodic, and chaotic
oscillations. Studies [51, 52] consider changes in bifurcation boundaries forming the model
stability domains with variation of the parameter values. Changes in community dynamics
due to interaction of prey and predator are analyzed based on the model trajectories [50-52].
This paper analyzes the influence of interspecies interaction on the dynamics of predator-prey
community using dynamic mode maps [54], which has allowed obtaining new biologically
meaningful conclusions.

INTERSPECIFIC INTERACTION INFLUENCE
ON THE COMMUNITY DYNAMICS

To understand the mechanisms of interspecific interaction influence on each species
dynamics in a community it is necessary to compare cases with and without interspecific
interaction. Indeed, if food abundance does not change from year to year, then the
reproductive potential can be considered as a constant value. This situation is observed in
natural populations of Arctic foxes inhabiting coastal areas. Animals eat seabirds, fish, seals
and marine invertebrates; the availability of these feed resources remains almost unchanged
from year to year [55]. As a result, coastal arctic foxes produce small litter each reproductive
season, and their birth rate is around constant. In terms of model (1), this is true when
a(x1(n)) = 1, which is equivalent to xi(n) / (X" + x(n)) =1 for system (3). The equality of
coefficient u to zero in system (1) (for equations (3): a-y2(n)/(x” + x1(n)) = 0) indicates that the
prey population is local and not affected by predator. Note that if xi(n) / (X" + x1(n)) = 1 and
a-y2(n) / (X" + x1(n)) = 0, then model (3) is a set of two uncoupled systems, each of which may
be considered separately. The case corresponds to a situation without interaction between
species.

Figure 2,a shows possible dynamic modes that occur in a rodent population without
predator pressure. The selected parameter values correspond to the case when stability loss
occurs via both the Feigenbaum scenario and the Neimark-Sacker one. With the selected
values of initial condition the local rodent population can demonstrate two-year, three-year
oscillations or stationary state under the different reproductive potential values (Fig. 2,a). At
the same time, multistability is observed in a wide region of parametric space: the 3-year
cycle area overlies the stability domain of the non-trivial fixed point and its bifurcation
according to the Neimark-Saker scenario. The proposed model describing dynamics of age-
structured predator population with food abundance demonstrates the emergence of quasi-
periodic oscillations with growth of birth rate parameter. In the case when the coefficient
values are located into periodic windows of quasi-periodic dynamics area, regular oscillations
are observed (Fig. 2,b).

t39

Mathematical Biology and Bioinformatics. 2020. V. 15. Ne S. doi: 10.17537/2020.15.t35



NEVEROVA et al.

ST I, ATTULD, PTLOD,

{00015, xdOy=r {O)=p A= | e 0y=001S, x(O)=3, (0F=31 =01 X {OFx A2, v (Dy=y A0y~ |
Fig. 2. Dynamic mode maps of model (3) a) the dynamics of prey population with xi(n)/(x" + x1(n)) = 1
and a-y2(n) / (X" + x1(n)) = 0; b) the dynamics of predator population with xi(n) / (X" + x1(n)) =1 and
ay2(n) / (X + x1(n)) = 0; c—d) community dynamics with interspecific interaction under different initial
conditions. The figures correspond to the period of observed cycles, Q is quasiperiodic dynamics, 1V is
infeasible parameter value area where the model loses its meaning. O (index 0) is an area with the absence
of a predator.

The presence of interspecific interaction in the community leads to increasing variety of
emerging dynamic modes of the predator population size. The Figure 2,c for fixed values of
interaction parameters allows studying the evolution of dynamic modes in the prey population
with increasing predator reproductive potential. Thus, the map 2,a for fixed value of r.= 10
with an increase in the ry values shows the following shifts of dynamic modes along the
dotted line: 2-cycle, stable state, 3-cycle. On the map 2,c, the ordinate axis corresponds to the
dotted line (the same dynamic modes are observed). Consequently, by increasing the
reproductive potential of the predator, we can analyze possible changes in dynamic modes of
both the prey population and the community.

In particular, the predator population goes extinct with low values of its reproductive
potential. At the same time, the prey population demonstrates various dynamic modes, whose
nature depends on its birth rate and self-regulation processes. Increasing in parameter w
values leads to emerging dynamic modes in the predator population of the community, the
nature of which is similar to the dynamic modes of the prey population in the absence of the
predator. That pattern remains until the Neimark-Sacker bifurcation occurrence that forms a
closed invariant curve. As a result, quasiperiodic oscillations appear and they are caused by
the interaction between the predator and prey, and therefore the predator impact on the prey
population results in quasiperiodic dynamics in the prey population of community (Fig. 2,c—
d).

Figures 2,c,d show dynamic mode maps with multistability areas in which initial
condition variation changes the 3-cycle domain that overlaps the stability area of non-zero
fixed point and the regimes emerging due to its stability loss via the Neimark-Sacker scenario.
Initially the 3-cycle occurs in rodent population without predator. Figures 2,c—d allows one to
conclude that into the domain A the 3-cycle of the prey population in the community with
extinct predator coexists with the community showing stable dynamics or quasiperiodic
fluctuations of interacting populations. Accordingly, the initial condition variation can result
in two opposite scenarios for the community development. The first one is the prey
population size fluctuates with 3-year period, which results in predator extinction due to drops
in prey number. The second scenario corresponds to the coexistence of predator and prey: the
community stabilizes or quasiperiodically fluctuates, which depends on the demographic
parameter values of the both species. In the case of species coexistence, the community
dynamics suits to the prey dynamics. At the same time, there is a possibility of dynamic mode
shift in the prey population. Therefore, if a change in the dynamics regime occurs in the prey
population, then corresponding changes will occur in the dynamics of the predator population.

Figure 3,a shows the attraction basins, demonstrating coexistence of alternative attractors:
the predator population extinction and the sustainable community. The model trajectories
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constructed for the initial conditions from different attraction basins demonstrate that at the
same parameter values the community stabilizes under some initial conditions, and the
predator population goes extinct under others ones (Fig. 3,a).
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Fig. 3. Attraction basins of coexisting dynamic modes with corresponding trajectories of model (3). The
figures correspond to the period of observed cycles, Q is quasiperiodic dynamics, 0 (index 0) is a case of
a predator extinction.

The predator dynamics is adjusted to the prey dynamics until bifurcation value of the
predator reproductive potential, at which a transition from stable state to quasi-periodic
oscillations occurs (Fig. 2,a-b). In the case of multistability, if the current values of
community population sizes are into the attraction basins of 3-cycle, which initially arises in
the prey population, then the predator dynamics also begins to fluctuate with three-year
period. As a result, if this multistability domain overlies the parametric area with the predator
dynamics impacted on the prey, then current sizes of community populations will determine
the species, who initiates the same dynamic behavior in the rest part of community. The maps
of Figure 2,c-d show domain B that is a fragment of the area with such an "overlapping".
Figure 3,b depicts the attraction basins corresponding to the phase space division by various
attractive states that give various scenarios of community development, which depend on the
"leading" species. Therefore, in the area with Figure 3, three-year fluctuations are observed,
and the predator dynamics follows the prey dynamics. In the area of quasiperiodic dynamics,
the predator initiates fluctuations in the prey population.

We use dynamic mode maps to study changes in the stability areas of System (3) fixed
points and fluctuation emergence scenarios in the populations of predator and prey due to
stability loss with an increase in values of both the community parameter that determine the
interacting species dynamics and the interaction coefficient (half saturation constants x°).
Figure 4 shows dynamic mode maps demonstrating the “predator-prey” community evolution
with variations in the parameters describing the species interaction (Fig. 4).

Consuming part of prey by a predator with a high reproductive potential can lead to
irregular (quasi-periodic) fluctuations in community. The smaller the coefficient x™ value, the
faster the prey population dynamics turns into irregular fluctuations with growth of the
predator reproductive potential. A similar situation is observed with increasing values of
parameter o. Note that dynamics of a predator with low reproductive potential values adjusts
to the prey population dynamics. However, with a higher birth rate of the predator the
community turns into irregular fluctuations that are initiated by the predator.
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Fig. 4. Dynamic mode maps of model (3) with different values of parameters describing interspecific
interaction. The figures correspond to the period of observed cycles, 0 (index 0) is an area with the
absence of a predator, Q is quasiperiodic dynamics, C is chaotic dynamics, IV is infeasible parameter
value area where the model loses its meaning. Initial conditions are xi1(0) =0.015,
X2(0) =y1(0) = y2(0) = 0.1.

Harvest influence on the community dynamics

Anthropogenic impact involving deratization, and some types of removal such as surveys
or hunting can influence on the dynamics of predator — prey community. To consider this
effect, we propose the following model modification of the community like “arctic fox —
rodent” assuming removal to be proportional to the size of harvested species.

_ ap-Ya(n)
X*+X4(n)

oy .Yz(n) *B1'X1(n)[l J*Bz'xz(n)

X *+X,(n) JL=h).

X, (n +1)=((31X1(n)[1— ]"'azxz(n))'e

xz(n+1):(s-xl(n)[l—%jw-xz(n))(l—m), "
VRS0 _
) = w2 YA

Yo(n+1)= (Yl(n)(l— %) +C-Y,(n)(A-h,),

where hy and h; denote harvest rates of prey and predator, respectively. The meaning of the
other variables and parameters does not change. Model (4) with substitution (2) takes the
form:

0 oy Rl ol
%M+ = hl)(rlxlm)[l X*Hi(n)}rzxz(n)J : ,

1. . o Y,(n) )
X(n+1)=(@1 hl)(xl(n)(l —x*+x1(n)J+V X,(N)), . (5

v+ =w—2 .y nya-h),
X*+x,(n)

Yo(n+1) = @=h,)(y, (M= y;(n)) + ¢y, (n)).

This paper considers the following two cases: (i) the harvest of predator (h:=0), and (ii)
the harvest of prey (h2=0). Each of the models has thee fixed points: a trivial, a semi-trivial,
and a nontrivial solutions. Similar to the case without harvesting, the considered systems
demonstrate periodic, quasiperiodic, and chaotic fluctuations as well as multimodality [30, 31,
51, 52] depending on population parameters values. Therefore, a variation of current
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population size can shift the dynamic mode of the community. Let us proceed with
considering each case dynamics in more detail.

Harvest of prey population

The semi-trivial and non-trivial fixed points of Model (5) in the case of prey population
harvest (h. = 0) take the form:

- 1-vH | HO@-vH)+rH) = H -

Xl = 1 , = Xl,
1) H +p(l-VvH) 1-vH 1-vH ’ 6)
y]_ :01 y2 :0} .
X (l-u) = (A-vH) | H@-W@E+HEG-R o x@-uH
2) H +p(1\;/vH) 1-vH 1-vH -
v v v +C—
yl :W : y21 y2 = T y
where 1-u=1-2Y2 w=w X H=1-h.
X + X1 X + X1

Figure 5 shows dynamic modes of Model (5) and their shifts because of changing value of
prey’s harvest rate. In addition, figure 5 illustrates the typical forms of stability domains of

the semi-trivial and non-trivial solutions of Model (5) as well as their changes with growth of
the parameter hi.

#=10,x*=0.15, p=1.56, a=0.45, =10, x*=0.15, p=1.56, «=0.45, r=10,x*=0.15, p=1.56, a=0.45,
v=0.15, ¢=0.33, k=0, ;=0 v=0.15, ¢=0.33, i,=0.2, h=0 v=0.15, ¢=0.33, 1,=0.3, k=0

L 00y (0y=0.1

"

X,(0)=x,(0)

v (00,015, x,(0y=y, (0y=1r,(0)=0.1

Fig. 5. Dynamic mode maps of model (5) with h,=0, and different values of harvest rate of prey and
initial conditions. The figures correspond to the period of observed cycles, Q is quasiperiodic dynamics,

IV is infeasible parameter value area where Model (5) loses its meaning. Index O is an area with the
absence of a predator.

One can see that stability domains of fixed points (6) and (7) are formed by bifurcation
lines giving emergence of two-year fluctuations or quasiperiodic dynamics when crossed
(Fig. 5, upper row). Harvest of a prey affects predator dynamics slightly, but changes a
multistability area (Fig.5, bottom row) where community dynamics depends on initial
population sizes. In particular, multistability region with coexisting stable dynamics and
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periodic oscillations narrows, thus community behavior becomes more predictable (Fig. 5).
Therefore, a prey harvest regularizes the community dynamics. On the other hand, at high
values of reproductive potentials, the population sizes determines the “leading” species,
whose dynamics defines the behavior of the whole system. Growth of harvest coefficient
value narrows this area and results in expanding parametric space region with fluctuations of
rodent population size initiated by predator. Note, the parametric area with prey’s 3-year cycle
and predator extinction narrows.

Note, the more prey is harvested, the smaller is the parametric space region with two-year
fluctuations of the community size, initiated by rodents (Fig. 6,b). The 2-cycle area decreases
up to its disappearance, which results in extending stability region of the fixed point. On the
other hand, along with narrowing the 2-cycle area, the quasiperiodic fluctuations region
emerges that that is between stability domains of non-trivial fixed point and 2-cycle. This
region goes up with intensity of harvest rate growth (Fig. 6), which indicates destabilization
of the community dynamics.

h=0.5 a) 1,=0.6 h) h=0.7 c)

10

1V

Fig. 6. Dynamic mode maps of model (5) with h, =0, and different values of harvest coefficient of prey
and initial conditions. Parameter values are r,= 10, p = 1.56, v = 0.15, oo = 0.45, ¢ = 0.33, x" = 0.15. Initial
conditions are X1(0) = 0.015, x2(0) = y1(0) = y»(0) = 0.1. The maps are supplemented with examples of the
model trajectories with long-period fluctuations. The figures correspond to the period of observed cycles,
Q is quasiperiodic dynamics, 1V is infeasible parameter value area where Model (5) loses its meaning.
Index 0 is an area with the absence of a predator.

In general, an increase in prey harvest intensity when reproductive potentials of both
species are sufficiently low results in situations when prey dynamics adapts to that of
predator. Note, these are the areas where long-period oscillations emerge (Fig. 6,b and 6,c)
like in continuous time models. However, discrete-time models produce more variety of
dynamic modes due to different quasiperiodic regimes, the type of which is determined by the
traversal order of closed invariant curve. In particular, long-period fluctuations, which are
similar to those demonstrated by continuous time models, emerge in the case when the phase
trajectory points fill an invariant curve in sequence (Fig 6,d). When the invariant curve is
filled “in random manner”, the model trajectory fluctuates with a small period and amplitude
changing at each time, while the envelope dynamics is a long-period oscillation. Figure 6,e
shows, the traversal order of limiting invariant curve on its various parts can differ.
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Harvest of predator population

Semi-trivial solution of System (5) at h1 = 0 coincides with semi-trivial one of Model (3).
In case of predator harvest, non-trivial fixed point of System (5) takes the following form:

f(u)= Y pWEEYrE) ey

1+p(1-v) 1-v T ey
_ _ —  HW+Hc-1
Y,=HW-y,,y,= HW 2 , (8)
where 1-u=1-2Y2 w-w_"_ H=1-h,
X + X1 X +X1

Figure 7 shows dynamic mode maps of Model (5) at hy = 0 and their changing because of
increase in predator harvest rate.

ry=10, x*=0.15, p~1.56, 0045, ry=10, x*=0.15, p=1.56, a=0.45,

=10, x*=0.15, p=1.56, a=0.45,
v=0.15, ¢=0.33, h=0, h,=0

vel).15, ¢=0.33, k=0, h;~0.2

v=0.15. ¢=0.33, i,=0, h,=0.1

0.1

=2, vi(0)=(0)=

X (0)y=xy(0)

0.1

%,(0)=0.015, xo(0)=y,(0)=y:(0)

0 W

Fig. 7. Dynamic mode maps of model (5) with h; = 0, and different values of harvest rate of predator and
initial conditions. The figures correspond to the period of observed cycles, Q is quasiperiodic dynamics,

IV is infeasible parameter value area where Model (5) loses its meaning. Index 0 is an area with the
absence of a predator.

A growth of predator harvest rate that is proportional to the predator population size
extends the stability area of non-trivial fixed point of Model (5) with an increase in
reproductive potential of predator (Fig. 7), i.e. in the line of abscise. Dynamic mode maps
show, with a moderate rate of prey population grow, harvest of predator population
regularizes community dynamics because of Neimark-Sacker bifurcation occurs latter.
Consequently, quasiperiodic fluctuations resulting from prey—predator interaction with
leading role of predator are observed only at high values of the predator reproductive
potential. The area of quasiperiodic dynamics changes also demonstrating appearance of
periodicity windows with different cycles. Similar to the previous case, at hy=0 Model (5)
has multistability areas that extend with growth of harvest rate value. As shown on Figure 7,
if the community demonstrates 3-year fluctuations, then harvest does not remove the system
from the attraction region of 3-cycle, i.e. the community dynamics is defined by that of prey.
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When dynamics of community is quasiperiodic, predator harvest stabilizes community
dynamics, and it leaded by prey dynamics again. Note, growth of h, changes slightly the
parametric areas where a variation of current population numbers alters leading species. At
that, the parametric region with predator extinction due to emergence of 3-year oscillation of
prey extends.

Let us consider the effect of harvest on the structure of the phase space Model (5) in the
multistability regions. Figure 8 shows attraction basins from multistability area with predator
population extinction (Fig. 8, row A) and where current population numbers of predator and
prey defines the leading species that defines dynamics of community (Fig. 8, row B).

a)  h=007 h=0 by k=0, h=0 c) h=0,h=05

w

.\’3(0)

x(0)

A)

ry= 10, x* =15, p=1.56,
a=0.45, =015, =033

W |

“28, w=0.97, v (0)=p-(0)=0. |

0
0 x(0) 5 0 x,(0) 5 0 x,(0)

)

i

d) 7,=0.06, f1.=0 e} h=0,h=0 ) h=0,h=05

N
~

=0.33
T vl0En0=0.1

&

=10, x*=0.15, p=1.56,

a=045 =015, ¢
=24, n

\3(0)
\3(0)

=27

r

N
0 x,(0) 5 0 x(0) 5

Fig. 8. Attraction basins of dynamic modes for the community with and without harvest. The area
dividing dynamic modes corresponds to 3-cycle in the case without harvest and fixed point (or
quasiperiodic dynamics) in the community with harvest. The figures correspond to the period of observed
cycles, Q is quasiperiodic dynamics, and index 0 is an area with the absence of a predator.

One can see growth of prey harvest rate narrows attraction basin of 3-cycle, thus
emergence probability of three-year fluctuations in rodent population followed by predator
extinction goes down. Further increase in prey harvest rate results in the situation where
attraction basin of fixed point captures the entire phase space. On the contrary, predator
harvest slightly changes attraction basins, which allows to conclude the prey population
defines the development scenario of predator population and of all community, as emergence
of three-year fluctuations followed by predator extinction and prey dynamics stabilization do
not depend on either predator population nor interaction. In multistability area where current
population numbers define the leading species (i.e. the species which dynamics defines that of
all community), prey harvest rapidly extends attraction basin of quasiperiodic dynamics up to
its capture of all phase space. Accordingly, prey harvest leads to the fact that its dynamics
adapts to the predator dynamics. In turn, predator harvest stabilizes the community dynamics
and expands the attraction basin of the stationary state slightly. Thus, predator and,

consequently, community dynamics adapts to that of prey in 3-cycle area as well as in the
stationary state one.
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CONCLUSION

Basing on the discrete-time dynamics model of prey-predator community like “arctic
fox — rodent” proposed earlier [50-52], the paper analyses interspecific interaction on the
community dynamics by means of construction and study of dynamic mode maps. Periodic,
quasiperiodic and chaotic fluctuations are shown to emerge in the system. The dynamic mode
is also revealed to depend on the initial population numbers in the community. Types of
dynamic modes of the proposed model and possibility of their change are investigated.
Interspecific interaction in a community is shown to expand the variety of dynamic modes
emerging in predator population essentially. Quasiperiodic oscillations emerging with high
values of the predator reproductive potential turned out to be the result of interaction between
predator and prey and thus, one could conclude the predator influence on prey population
results in fluctuation appearance. Note, that dynamics of predator with low values of its
reproductive potential adapts to that of prey, but higher birth rate of predator changes the
situation essentially and then the community demonstrates irregular fluctuations initiated by
predator.

The model reveals multistability when a variation of initial condition changes a scenario
of the community development. In particular, 3-cycle and modes emerged by its bifurcation
coexist with both the equilibrium and the modes appeared due to its stability loss. Depending
on the system parameter values and current population numbers in the community, various
scenarios of community development are possible. The first one is that the prey population
demonstrates three-year fluctuations, which results in extinction of the predator because of
drops in prey number. The second scenario occurs with coexistence of predator and prey
populations, and their current sizes determine the leading species whose dynamics defines
that of community. The third case is also characterized by species coexistence, however,
community dynamics always adapts to that of prey, and dynamics mode shift is possible in
the prey population, which changes predator dynamics in the same way.

To study an anthropogenic effect on the community dynamics we proposed a modification
of discrete-time model describing populations’ number dynamics in the community like
“arctic fox — rodent” that allows considering the anthropogenic effect as a harvest of prey or
predator population.

Harvest of prey population proportionally its size is shown to extend the stability area of
fixed point corresponding to stable species coexistence. It is interesting that generally harvest
of a prey population does not influence on predator dynamics considerably, the changes are
mainly visible in areas of multistability, where the community dynamics depends on the
initial values of the population numbers. In particular, one can observe narrowing the
multistability region, where transition from stable dynamics to periodic fluctuations and vice
versa is possible, thus, and the community behavior becomes more predictable. As a result,
prey harvest regularizes the community dynamics. Dynamics of prey population is shown to
be sensitive to its harvest. Even a small rate of harvest dampens fluctuations in its numbers; in
multistability areas the equilibrium captures all phase space. Harvest is shown to stabilize the
community dynamics in most cases. However, in some situations a high of prey harvest rate
initiates fluctuations in a stable community.

Predator harvest extends stability area of equilibrium along the parameter characterizing
reproductive potential of predator. Accordingly, only predator having high values of its
reproductive potential can determine prey dynamics. Consequently, at a medium growth rate
of the prey population, harvest of the predator population regularizes the community
dynamics, and multistability areas extending with harvest rate goes up continue to persist. A
change of the community dynamics mode is possible as a result of shift in the dynamic mode
of prey population, which initiates oscillations of the same type in the predator population.

Note, the conducted study of selective harvest effect on the community dynamics
confirms our concepts of the leading species that determines the community dynamics. In
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particular, prey harvest dampens fluctuations in its numbers, and the more the harvest rate, the
wider the stability area of system fixed point along the parameter characterizing reproductive
potential of rodents. At that, fluctuation emergence in the community depends on the values
of predator reproductive potential, and transition from stable dynamics to quasi-periodic one
depends on predator influence on the rodent population provided that predator has high birth
rate. In turn, this fact also confirms the shift of Neimark-Sacker bifurcation line along the axis
of the parameter w with an increase in predator harvest rate. Indeed, predator harvest reduces
its population size, and, consequently, the pressure of the predator impact on the prey
population decreases. As a result, dynamics of a community with a predator having high
reproductive potential is stabilized by harvest, adapting to prey population dynamics.

This work was partially supported by the Russian Foundation for Basic Research (No. 18-51-
45004 IND_a).
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MEPEBO/IbI OIYBJIMKOBAHHBIX CTATEN

JAMHaMn4ecKue pesKUMbI CTPYKTYPUPOBAHHOTO
C000111eCTBA «XMITHUK-KEPTBA» U UX U3MEHEHH e
B pe3yJibTaTe AHTPONOTeHHOT0 U3bATHUSA 0Co0eil

Heseposa I'.IL. %, ’Knanosa O.J1. !, ®pucman E.41. 2

YUncmumym asmomamuru u npoyeccos ynpaenenus, Braousocmox, Poccus
2 Hncmumym KoMNIeKCHO20 AHANU3A Pe2UOHATbHBIX npobnem, Bupobudscan Poccus

Annomauyus. B pabote u3y4aroTcsi pexXMMbl JUHAMHKH, KOTOPbIE BO3HHKAIOT B
pe3ynbpTaTe B3auMOJCHCTBHS BUJOB B TUCKPETHON BO BPEMEHH MOJAETH «XHITHUK -
XKepTBa», OPUCHTUPOBAHHON HA ONMHMCAHHE AWHAMHUKH COOOILECTBA «MBIIIEBUIHbIC
IPBI3YHBI-TIECEI» C YUYETOM BO3PACTHOM CTPYKTyphl. Oco00€ BHUMaHHUE yaenseTcs
aHAJIN3y CHUTyallHd, IpU KOTOPBIX BO3MOYKHAa CMEHA JAMHAMHUYECKOro pexuma. B
YaCTHOCTH, OKa3aJloCh, YTO 3-IIMKJ, BO3HUKAIOUINI B TUHAMUKE YKEPTBBI, MOXKET
MIPUBOJUTH K THOenu xuurHuka. [Ipu aTom crieHapuid pa3BUTHS, COOTBETCTBYIOLIHIA
HETIOJIHOMY COOOILECTBY, COCYHIECTBYET C BO3MOXHOCTBIO Pa3BUTHUS IOJIHOTO
cooO1miecTBa, KOTOPOE MOXET ObITh, KaK YCTOMYHMBBIM, TaK M HEYCTOMYHMBBIM.
Wzyuaercs BiaHMsHUE AHTPONOTCHHOI'O H3BATHA OCOOEH Ha PEXUMBI JHMHAMHKH
coobmiecTBa. PaccMoTpeHo 2 ciydas, KoOrja peanu3yercs HU3bATHE KEPTBbI, U
KOTJa OCYIIECTBIIICTCS M30MpaTeNbHbIM INpombIceN XuiuHuka. llokazaHo, 4TO
U3BSITHE KEPTBBI NPUBOJUT K PACHIMPEHHIO 00JaCTH 3HAYCHUH IapaMmeTpoB, MPH
KOTOPBIX YHCJIEHHOCTH B3aUMOJICHCTBYIOIIUX BHJIOB CTPEMSTCS K YCTOWIHBOMY
HETPUBHAJIHLHOMY paBHOBecHIO. lIpM 3TOM H3BATHE KEPTBBI IMPAKTHUECKH HE
CKa3bIBAaCTCsSl HA XapakTepe NUHAMMKH XUIIHMKA, WU3MEHEHHs NMPEHUMYLIECTBEHHO
KacaroTcst obiactel MynbTHCTaOMIBHOCTH. B yacTHOCTH, HaGnomaeTcs cyxKeHue
00JIacTH MYJIBTHCTAOMIIBHOCTH, B KOTOPOH B 3aBUCHIMOCTH OT HAYaIbHBIX YCIIOBHI
MOTYT pEaJH30BBIBATbCS pa3HblE JWHAMHYECKHE PEKHUMBL  IMEPEXON K
YCTOMYMBOMY PaBHOBECHIO WJIM YCTAHOBJICHHE NEPHOANYECKUX KOJeOaHMH, T.e.
MOBE/IeHHE COOOIIecTBa CTAHOBUTCS Oojee mnpenckasyembiM. IlokaszaHo, d4ToO
JUHAMHUKA TOMYJISILUM JKEPTBBl UYYBCTBUTEIbHA K €€ M3BATHIO: B 00JacTsIX
MYJBTUCTA0OMIIBHOCTH YCTOMYMBOE paBHOBECHE 3axBaTbiBacT Bce (a3oBoe
[IPOCTPAHCTBO. B cilydae, n3bsATUs XUIIHUKA, HAOJIOAAETCs pacIliupeHue 001acTu
YCTOWYMBOCTH PaBHOBECHS, M KaK pe3yJabTaT XWIMHHUK OMpPENeNsieT JUHAMUKY
JKEPTBbI TOJBKO NPU BBICOKMX 3HAUEHHUSX €ro PENpOAYKTUBHOIO MOTEHIMAJA.
ITokazaHo, 4TO 37€Ch CMEHa AMHAMHYECKOTO PEXHMMa B COOOIECTBE BO3MOXKHA B
pe3ynbTaTe CMEHBl AMHAMHUYECKOTO peXHMMa B TOMYJSIUH J>KEPTBBI, KOTOpas
WHULUUPYET KoJeOaHus TAKOTO e XapakTepa B MOMyJIsIUK XUIIHUKa. [IpoBeaeHo
CpaBHEHHE AMHAMHYECKHX PEXKHMOB, BO3HUKAIOLINX B MOJEIH COOOIECTBA, KOTAa
OHO CBOOOJTHO OT U3BATHUS M KOTZIa OHO TO/IBEPTaeTcsl H30UPaTeTbHOMY H3BSITHIO.

Knrouesvle cnosa: mamemamuueckas mooenb ¢ OUCKDEMHbIM BPEMEHEM, CO00WeCmao,

XUWHUK-DICEPMBA, YCMOUYUBOCTb, OUHAMUYECKUE DEeXNCUMbI, 803DPACMHAS CMPYKMYpda,
usvamue.
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