Русская версия English version   
Том 19   Выпуск 1   Год 2024
Сафа Садек Файез1, Ахмед АбдулДжаббар Сулейман2

Биоинформатический анализ длинных некодирующих РНК и их регуляторного воздействия на ключевые гены, связанные с витилиго

Математическая биология и биоинформатика. 2024;19(1):155-168.

doi: 10.17537/2024.19.155.

Список литературы

  1. Ongenae K., Van Geel N., Naeyaert J.-M. Evidence for an Autoimmune Pathogenesis of Vitiligo. Pigment Cell Res. 2003;16(2):90–100. doi: 10.1034/j.1600-0749.2003.00023.x
  2. Hamada T., Sakurane H.F., Saito T. Behavior of pigment cells on lesions of the pigmented nevus with vitiligo. J. Dermatol. 1979;6(3):143–152. doi: 10.1111/j.1346-8138.1979.tb01893.x
  3. Frisoli M.L., Essien K., Harris J.E. Vitiligo: Mechanisms of Pathogenesis and Treatment. Annu. Rev. Immunol. 2020;38:621–648. doi: 10.1146/annurev-immunol-100919-023531
  4. Zhang Y., Cai Y., Shi M., Jiang S., Cui S., Wu Y., X.-H. Gao, Chen H.-D. The Prevalence of Vitiligo: A Meta-Analysis. PLoS One. 2016;11(9). Article No. e0163806. doi: 10.1371/journal.pone.0163806
  5. de Castro C.C.S., Miot H.A. Prevalence of vitiligo in Brazil–A population survey. Pigment Cell Melanoma Res. 2018;31(3):448–450. doi: 10.1111/pcmr.12681
  6. de Castro C.C.S., do Nascimento L.M., Olandoski M., Mira M.T. A pattern of association between clinical form of vitiligo and disease-related variables in a Brazilian population. J. Dermatol. Sci. 2012;65(1):63–67. doi: 10.1016/j.jdermsci.2011.09.011
  7. Marchioro H.Z., Silva de Castro C.C., Fava V.M., Sakiyama P.H., Dellatorre G., Miot H.A. Update on the pathogenesis of vitiligo. An. Bras. Dermatol. 2022;97(4):478–490. doi: 10.1016/j.abd.2021.09.008
  8. Spizzo R., Almeida M.I., Colombatti A., Calin G.A. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene. 2012;31:4577–4587. doi: 10.1038/onc.2011.621
  9. Fayez S.S., Mishlish S.M., Saied H.M., Shaban S.A., Suleiman A.A., Hassan F., Al-Saffar A.Z., Al-Obaidi J.R. Role of Different Types of miRNAs in Some Cardiovascular Diseases and Therapy-Based miRNA Strategies: A Mini Review. Biomed Res. Int. 2022. doi: 10.1155/2022/2738119
  10. Kapranov P., Cheng J., Dike S., Nix D.A., Duttagupta R., Willingham A.T., Stadler P.F., Hertel J., Hackermüller J., Gingeras T.R. RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription. Science. 2007;316(5830):1484–1488. doi: 10.1126/science.1138341
  11. Tian D., Sun S., Lee J.T. The Long Noncoding RNA, Jpx, Is a Molecular Switch for X Chromosome Inactivation. Cell. 2010;143(3):390–403. doi: 10.1016/j.cell.2010.09.049
  12. Ørom U.A., Derrien T., Beringer M., Gumireddy K., Gardini A., Bussotti G., Lai F., Zytnicki M., Notredame C., Huang Q., et al. Long Noncoding RNAs with Enhancer-like Function in Human Cells. Cell. 2010;143(1):46–58. doi: 10.1016/j.cell.2010.09.001
  13. Hung T., Wang Y., Lin M.F., Koegel A.K., Kotake Y., Grant G.D., Horlings H.M., Shah N., Umbricht C., Wang P., et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat. Genet. 2011;43:621–629. doi: 10.1038/ng.848
  14. Huarte M., Guttman M., Feldser D., Garber M., Koziol M.J., Kenzelmann-Broz D., Khalil A.M., Zuk O., Amit I., Rabani M., et al. A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response. Cell. 2010;142(3):409–419. doi: 10.1016/j.cell.2010.06.040
  15. Guttman M., Amit I., Garber M., French C., Lin M.F., Feldser D., Huarte M., Zuk O., Carey B.W., Cassady J.P., et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458:223–227. doi: 10.1038/nature07672
  16. Ulitsky I., Bartel D.P. lincRNAs: Genomics, Evolution, and Mechanisms. Cell. 2013;154(1):26–46. doi: 10.1016/j.cell.2013.06.020
  17. Mercer T.R., Dinger M.E., Mattick J.S. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 2009;10:155–159. doi: 10.1038/nrg2521
  18. Long Y., Wang X., Youmans D.T., Cech T.R. How do lncRNAs regulate transcription? Sci. Adv. 2017;3(9). doi: 10.1126/sciadv.aao2110
  19. Peng W.-X., Koirala P., Mo Y.-Y. LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 2017;36:5661–5667. doi: 10.1038/onc.2017.184
  20. Li Z., Li X., Jiang C., Qian W., Tse G., Chan M.T.V., Wu W.K.K. Long non-coding RNAs in rheumatoid arthritis. Cell Prolif. 2018;51(1). Article No. e12404. doi: 10.1111/cpr.12404
  21. Abbasifard M., Kamiab Z., Bagheri-Hosseinabadi Z., Sadeghi I. The role and function of long non-coding RNAs in osteoarthritis. Exp. Mol. Pathol. 2020;114. Article No. 104407. doi: 10.1016/j.yexmp.2020.104407
  22. Tang L., Liang Y., Xie H., Yang X., Zheng G. Long non-coding RNAs in cutaneous biology and proliferative skin diseases: Advances and perspectives. Cell Prolif. 2020;53(1). Article No. e12698. doi: 10.1111/cpr.12698
  23. Li S., Zeng H., Huang J., Lu J., Chen J., Zhou Y., Mi L., Zhao X., Lei L., Zeng Q. Identification of the Competing Endogenous RNA Networks in Oxidative Stress Injury of Melanocytes. DNA Cell Biol. 2021;40(2):192–208. doi: 10.1089/dna.2020.5455
  24. Li D., Liu L., He X., Wang N., Sun R., Li X., Yu T., Chu X. Roles of long non-coding RNAs in angiogenesis-related diseases: Focusing on non-neoplastic aspects. Life Sci. 2023;330. Article No. 122006. doi: 10.1016/j.lfs.2023.122006
  25. Clough E., Barrett T. The Gene Expression Omnibus database. Methods Mol. Biol. 2016;1418:93. doi: 10.1007/978-1-4939-3578-9_5
  26. Xie Z., Bailey A., Kuleshov M.V., Clarke D.J.B., Evangelista J.E., Jenkins S.L., Lachmann A., Wojciechowicz M.L., Kropiwnicki E., Jagodnik K.M., et al. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc. 2021;1(3). Article No. e90. doi: 10.1002/cpz1.90
  27. Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., Tsafou K.P., et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):D447–D452. doi: 10.1093/nar/gku1003
  28. Cario-André M., Pain C., Gauthier Y., Taïeb A. The melanocytorrhagic hypothesis of vitiligo tested on pigmented, stressed, reconstructed epidermis. Pigment Cell Res. 2007;20(5):385–393. doi: 10.1111/j.1600-0749.2007.00396.x
  29. Yaghoobi R., Omidian M., Bagherani N. Vitiligo: A review of the published work. J. Dermatol. 2011;38(5):419–431. doi: 10.1111/j.1346-8138.2010.01139.x
  30. Yu X., Cui Y., Zhu X., Xu H., Li L., Gao G. MicroRNAs: Emerging players in the pathogenesis of vitiligo. Front. Cell Dev. Biol. 2022;10. Article No. 964982. doi: 10.3389/fcell.2022.964982
  31. Guo J., Gan Q., Gan C., Zhang X., Ma X., Dong M. LncRNA MIR205HG regulates melanomagenesis via the miR-299-3p/VEGFA axis. Aging. 2021;13(4):5297–5311. doi: 10.18632/aging.202450
  32. Hu X., Kim H., Raj T., Brennan P.J., Trynka G., Teslovich N., Slowikowski K., Chen W.M., Onengut S., Baecher-Allan C., et al. Regulation of Gene Expression in Autoimmune Disease Loci and the Genetic Basis of Proliferation in CD4+ Effector Memory T Cells. PLos Genet. 2014;10(6). Article No. e1004404. doi: 10.1371/journal.pgen.1004404
  33. Duan J., Greenberg E.N., Karri S.S., Andersen B. The circadian clock and diseases of the skin. FEBS Lett. 2021;595(19):2413–2436. doi: 10.1002/1873-3468.14192
  34. Chen Y.-Y., Liu L.-P., Zhou H., Zheng Y.-W., Li Y.-M. Recognition of Melanocytes in Immuno-Neuroendocrinology and Circadian Rhythms: Beyond the Conventional Melanin Synthesis. Cells. 2022;11(13). Article No. 2082. doi: 10.3390/cells11132082
  35. Del Bino S., Duval C., Bernerd F. Clinical and Biological Characterization of Skin Pigmentation Diversity and Its Consequences on UV Impact. Int. J. Mol. Sci. 2018;19(9). Article No. 2668. doi: 10.3390/ijms19092668
  36. Pei S., Chen J., Lu J., Hu S., Jiang L., Lei L., Ouyang Y., Fu C., Ding Y., Li S., et al. The Long Noncoding RNA UCA1 Negatively Regulates Melanogenesis in Melanocytes. J. Invest. Dermatol. 2020;140(1):152–163.e5. doi: 10.1016/j.jid.2019.04.029
  37. Alhelf M., Rashed L.A., Ragab N., Elmasry M.F. Association between long noncoding RNA taurine-upregulated gene 1 and microRNA-377 in vitiligo. Int. J. Dermatol. 2022;61(2):199–207. doi: 10.1111/ijd.15669
  38. Liu F., Singh A., Yang Z., Garcia A., Kong Y., Meyskens F.L. MiTF links Erk1/2 kinase and p21CIP1/WAF1 activation after UVC radiation in normal human melanocytes and melanoma cells. Mol. Cancer. 2010;9(1):1–12. doi: 10.1186/1476-4598-9-214
  39. Pang K., Xiao Y., Li L., Chen X., Wei G., Qian X., Li T., Guo Y., Chen J., Tang Y. LncRNA-mRNA co-expression network revealing the regulatory roles of lncRNAs in melanogenesis in vitiligo. J. Hum. Genet. 2022;67:247–252. doi: 10.1038/s10038-021-00993-z
  40. Du J., Miller A.J., Widlund H.R., Horstmann M.A., Ramaswamy S., Fisher D.E. MLANA/MART1 and SILV/PMEL17/GP100 Are Transcriptionally Regulated by MITF in Melanocytes and Melanoma. Am. J. Pathol. 2003;163(1):333–343. doi: 10.1016/S0002-9440(10)63657-7
  41. Yoshizawa J., Abe Y., Oiso N., Fukai K., Hozumi Y., Nakamura T., Narita T., Motokawa T., Wakamatsu K., Ito S., et al. Variants in melanogenesis-related genes associate with skin cancer risk among Japanese populations. J. Dermatol. 2014;41(4):296–302. doi: 10.1111/1346-8138.12432
Содержание Оригинальная статья
Мат. биол. и биоинф.
2024;19(1):155-168
doi: 10.17537/2024.19.155
опубликована на англ. яз.

Аннотация (англ.)
Аннотация (рус.)
Полный текст (англ., pdf)
Список литературы
Доп. материалы

 

  Copyright ИМПБ РАН © 2005-2024