Russian version English version
Volume 9   Issue 2   Year 2014
Sagaidachnyi A.A., Usanov D.A., Skripal A.V., Fomin A.V.

Thermo-Electrical Analogy of Skin Properties and Low-Pass Filter, Correlation between Skin Temperature and Blood Flow Oscillations in Extremities

Mathematical Biology & Bioinformatics. 2014;9(2):309-318.

doi: 10.17537/2014.9.309.


  1. Beuken DL. Wärmeverluste bei periodisch betriebenen Öfen: Dissertation. Freiburg, Germany; 1936.
  2. Bosworth RCL. LXXXIII. The thermal Ohm, Farad and Henry. Philosophical Magazine. 1946;37(274):803-808.
  3. Weedy BM. The analogy between thermal and electrical quantities. Electric Power Systems Research. 1988;15(3):197-201.
  4. Blad G, Kalita W, Klepacki D, Potencki J, Weglarski M. Temperature field simulation of thick-film microcircuits using electro-thermal analogy. In: Electronics System integration Technology Conference. Dresden; 2006. 1st. IEEE. V. 2. P. 1261-1265. doi: 10.1109/ESTC.2006.280173.
  5. Robertson AF, Gross D. An electrical-analog method for transient heat-flow analysis. NBS J. Research. 1958;61(2):105. doi: 10.6028/jres.061.016.
  6. Shlyk IuK, Plaksin AI. Vestnik kibernetiki (Herald of Cybernetics). 2012;11:32-35 (in Russ.).
  7. Kinsht DN, Kinsht NV. Informatika i sistemy upravleniia (Informatics and Control Systems). 2004;1(7):43-51 (in Russ.).
  8. Huizenga C, Zhang H, Duan T, Arens E. An improved multinode model of human physiology and thermal comfort. In: Proceedings of Building Simulation'99. (Kyoto, Japan). 1999;6:53-359.
  9. Gowrishankar TR, Stewart D, Martin G, Weaver J. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion. Biomedical Engineering Online. 2004;3(1):42.
  10. McQuilkin GL, Panthagani D, Metcalfe RW, Hassan H, Yen AA, Naghavi M, Hartley CJ. Digital thermal monitoring (DTM) of vascular reactivity closely correlates with doppler flow velocity. In: Engineering in Medicine and Biology Society, EMBC 2009. Annual International Conference of the IEEE. Minneapolis, Minnesota, USA; 2009. P. 1100-1103.
  11. Sagaidachnyi AA, Skripal AV, Fomin AV, Usanov DA. Restoration of the blood flow oscillations spectrum through the finger temperature analysis and dispersion of the temperature signal in the biotissue. Regionarnoe krovoobrashchenie i mikrotsirkuliatsiia (Regional Haemodynamics and Microcirculation). 2013(1):76-82 (in Russ.).
  12. Sagaidachnyi AA, Skripal AV, Fomin AV, Usanov DA. Method of the photoplethysmogram restoration in the band of endothelial and neurogenic oscillations through the analysis of the finger tips temperature. Regionarnoe krovoobrashchenie i mikrotsirkuliatsiia (Regional Haemodynamics and Microcirculation). 2013(3):22-28 (in Russ.).
  13. Sagaidachnyi AA, Skripal AV, Fomin AV, Usanov DA. Determination of the amplitude and phase relationships between oscillations in skin temperature and photoplethysmography – measured blood flow in fingertips. Physiological Measurement. 2014;35(2):153-166. doi: 10.1088/0967-3334/35/2/153.
  14. Sagaidachnyi AA, Usanov DA, Skripal AV, Fomin AV. Skin blood flow as the first time derivative of the temperature: spectral approach to the blood flow estimation in hands. Proc. SPIE. . 2014;9031(903108). doi: 10.1117/12.2053110.
  15. Sagaidachnyi AA, Usanov DA, Skripal AV, Fomin AV. Correlation of skin temperature and blood flow oscillations. Proc. SPIE. 2011;8337. doi: 10.1117/12.925146.
  16. Shitzer A, Stroschein LA, Gonzalez RR, Pandolf KB. Lumped-parameter tissue temperature-blood perfusion model of a cold-stressed fingertip. Journal of Appl. Physiol. 1996;80:1829-1834.
  17. Shitzer A, Stroschein LA, Sharp MW, Gonzalez RR, Pandolf KB. Simultaneous measurements of finger-tip temperatures and blood perfusion rates in a cold environment. Journal of Thermal Biology. 1997;22(3):159-167. doi: 10.1016/S0306-4565(97)00004-1.
  18. Usanov DA, Sagaidachnyi AA, Skripal AV, Fomin AV. Interrelation of temperature and blood flow oscillations of fingers. Regionarnoe krovoobrashchenie i mikrotsirkuliatsiia (Regional Haemodynamics and Microcirculation). 2012;2:37-42 (in Russ.).
  19. Sagaidachnyi AA, Usanov DA, Skripal AV, Fomin AV. Restoration of finger blood flow oscillations by means of thermal imaging. In: E-book Proceedings of 11-th International Conference on Quantitative InfraRed Thermography (QIRT 2012) Bio, manuscript ID 115. Italy, Naples, June 2012.
  20. Ley O, Dhindsa M, Sommerlad SM, Barnes JN, DeVan AE, Naghavi M, Tanaka H. Use of temperature alterations to characterize vascular reactivity. Clin. Physiol. Funct. Imaging. 2011;31:66-72. doi: 10.1111/j.1475-097X.2010.00981.x.
  21. Ley O, Deshpande CV. Comparison of two mathematical models for the study of vascular reactivity. Computers in Biology and Medicine. 2009;39(7):579-589. doi: 10.1016/j.compbiomed.2008.12.003.
  22. Wang X, He Y. Experimental study of vascular reactivity in the fingertip: an infrared thermography method. In: 3-rd International Conference on Biomedical Engineering and Informatics (BMEI 2010). Yantai, China; 2010. P. 1180-1184. doi: 10.1109/BMEI.2010.5639589.
  23. Aurélio SBM. Developments in Heat Transfer. Croatia: InTech; 2011. P. 688.
  24. Love TJ. Thermography as an indicator of blood perfusion. Annals New York Academy of Science. 1980;335:429-437. doi: 10.1111/j.1749-6632.1980.tb50766.x.
  25. Shashkov AG, Bubnov VA, Ianovskii SIu. Volnovye iavleniia teploprovodnosti. Sistemno-strukturnyi podkhod (Wave propagation effects in thermal conductivity. Systematic and structural approach.). Moscow; 2004. 296 p. (in Russ.).
  26. German I. Fizika organizma cheloveka. Dolgoprudnyi; 2011. 992 p. Translation of: Herman I.P. Physics of the Human Body. Springer; 2007 (in Russ.).


Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2014.9.309
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2022