Russian version English version
Volume 9   Issue 2   Year 2014
Grinevich A.A., Tankanag A.V., Chemeris N.K.

Role of elasticity of blood vessels in formation of highly amplitude oscillations of a blood flow with frequency of 0.1 Hz

Mathematical Biology & Bioinformatics. 2014;9(2):341-358.

doi: 10.17537/2014.9.341.

References

  1. Hoffmann U, Yanar A, Franzeck UK, Edwards JM, Bollinger A. The frequency histogram - a new method for the evaluation of laser Doppler flux motion. Microvasc. Res. 1990;40:293-301. doi: 10.1016/0026-2862(90)90028-P.
  2. Bracic M, Stefanovska A. Wavelet-based analysis of human blood-flow dynamics. Bull. Math. Biol. 1998;60:919-935. doi: 10.1006/bulm.1998.0047.
  3. Stefanovska A, Bracic M, Kvernmo HD. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans. Biomed. Eng. 1999;46:1230-1239.
  4. Muck-Weymann ME, Albrecht HP, Hager D, Hiller D, Hornstein OP, Bauer RD. Respiratory-dependent laser-Doppler flux motion in different skin areas and its meaning to autonomic nervous control of the vessels of the skin. Microvasc. Res. 1996;52:69-78. doi: 10.1006/mvre.1996.0044.
  5. Bollinger A, Yanar A, Hoffmann U, Franzeck UK. Is high-frequency fluxmotion due to respiration or to vasomotion activity? In: Progress in Applied Microcirculation. Ed. Messmer K. Basel: Karger; 1993. P. 52-58.
  6. Bertuglia S, Colantuoni A, Intaglietta M. Effects of L-NMMA and indomethacin on arteriolar vasomotion in skeletal muscle microcirculation of conscious and anesthetized hamsters. Microvasc. Res. 1994;48:68-84. doi: 10.1006/mvre.1994.1039.
  7. Landsverk SA, Kvandal P, Kjelstrup T, Benko U, Bernjak A, Stefanovska A, Kvernmo H, Kirkeboen KA. Human skin microcirculation after brachial plexus block evaluated by wavelet transform of the laser Doppler flowmetry signal. Anesthesiology. 2006;105:478-484. doi: 10.1097/00000542-200609000-00010.
  8. Bernjak A, Clarkson PBM, McClintock PVE, Stefanovska A. Low-frequency blood flow oscillations in congestive heart failure and after O² 1-blockade treatment. Microvasc. Res. 2008;76:224-232.
  9. Stewart JM, Taneja I, Goligorsky MS, Medow MS. Noninvasive measure of microvascular nitric oxide function in humans using very low-frequency cutaneous laser Doppler flow spectra. Microcirculation. 2007;14:169-180. doi: 10.1080/10739680601139179.
  10. Kvandal P, Landsverk SA, Bernjak A, Stefanovska A, Kvernmo HD, Kirkeboen KA. Low-frequency oscillations of the laser Doppler perfusion signal in human skin. Microvasc. Res. 2006;72:120-127. doi: 10.1016/j.mvr.2006.05.006.
  11. Kozlov VI. In: Materialy III Vserossiiskogo simpoziuma «Primenenie lazernoi dopplerovskoi floumetrii v meditsinskoi praktike» (Book of abstracts of III Russian Symposium “The use of laser Doppler flowmetry in medical practice”). Moscow; 2000. P. 5-15 (in Russ.).
  12. Kozlov VI, Sokolov VG. In: Materialy II Vserossiiskogo simpoziuma «Primenenie lazernoi doplerovskoi floumetrii v meditsinskoi praktike» (Book of abstracts of II Russian Symposium “The use of laser Doppler flowmetry in medical practice”). Moscow; 1998. P. 8-14 (in Russ.)
  13. Malpas S. Neural influences on cardiovascular variability: possibilities and pitfalls. Am. J. Physiol. Heart Circ. Physiol. 2002;282:H6-H20.
  14. Cohen MA, Taylor JA. Short-term cardiovascular oscillations in man: Measuring and modeling the physiologies. J. Physiol. 2002;542:669-683. doi: 10.1113/jphysiol.2002.017483.
  15. Bernardi L, Hayoz D, Wenzel R, Passino C, Calciati A, Weber R, Noll G. Synchronous and baroceptor-sensitive oscillations in skin microcirculation: evidence for central autonomic control. Am. J. Physiol. 1997;273:H1867-H1878.
  16. Stefanovska A, Bracic M. Contemp. Phys. 1999;40:31.
  17. Yan Y, Shen G, Xie K, Tang C, Wu X, Xu Q, Liu J, Song J, Jiang X, Luo E. Wavelet analysis of acute effects of static magneticfield on resting skin bloodflow at the nail wall in young men. Microvasc. Res. 2011;82:277-283.
  18. Bernardi L, Porta C, Casucci G, Balsamo R, Bernardi NF, Fogari R, Sleight P. Dynamic Interactions Between Musical, Cardiovascular, and Cerebral Rhythms in Humans. Circulation. 2009;119:3171-3180. doi: 10.1161/CIRCULATIONAHA.108.806174.
  19. Bernardi LC, Porta A, Gabutti L, Spicuzza L, Sleight P. Modulatory effects of respiration. Auton. Neurosci. Basic and Clin. 2001;90:47-56. doi: 10.1016/S1566-0702(01)00267-3.
  20. Kiselev AR, Gridnev VI. Oscillatory processes in vegetative regulation of cardiovascular system (Review). Saratovskii nauchno-meditsinskii zhurnal (Saratov Journal of Medical Scientific Research). 2011;7(1):34-39 (in Russ.).
  21. Liao F, Jan Y-K. Enhanced phase synchronization of blood flow oscillations between heated and adjacent non-heated sacral skin. Med. Biol. Eng. Comput. 2012;50:1059-1070. doi: 10.1007/s11517-012-0948-y.
  22. Kirilina TV, Krasnikov GV, Tankanag AV, Piskunova GM, Chemeris NK. Spatial synchronization of the blood flow oscillations in human skin microcirculation. Regionarnoe krovoobrashchenie i mikrotsirkuliatsiia (Regional Haemodynamics and Microcirculation). 2009;3:32-36 (in Russ.).
  23. Karavaev AS, Prokhorov MD, Ponomarenko VI, Kiselev AR, Gridnev VI, Ruban EI, Bezruchko BF. Synchronization of low-frequency oscillations in the human cardiovascular system. Chaos. 2009;19:033112. doi: 10.1063/1.3187794.
  24. Prokhorov MD, Ponomarenko VI, Gridnev VI, Bodrov MB, Bespyatov AB. Synchronization between main rhythmic processes in the human cardiovascular system. Phys. Rev. E. 2003;68:041913. doi: 10.1103/PhysRevE.68.041913.
  25. Kiselev AR, Gridnev VI, Prokhorov MD, Karavaev AS, Posnenkova OM, Ponomarenko VI, Bezruchko BP. Selection of optimal dose of beta-blocker treatment in myocardial infarction patients based on changes in synchronization between 0.1 Hz oscillations in heart rate and peripheral microcirculation. J. Cardiovasc. Med. 2012;13:491-498. doi: 10.2459/JCM.0b013e3283512199.
  26. Pedley TJ. The Fluid Mechanics of Large Blood Vessels. London: Cambridge University Press; 1980. doi: 10.1017/CBO9780511896996.
  27. Ursino M. Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am. J. Physiol. 1998;275:H1733-H1747.
  28. Ursino M, Magosso E. Short-term autonomic control of cardiovascular function: a mini-review with the help of mathematical models. J. Integr. Neurosci. 2003;2:219-247. doi: 10.1142/S0219635203000275.
  29. Tsvetkov VD. Study of the advantages of bifurcational vessel branching in the precapillary part of the coronary bed in mammals. Fundamental'nye issledovaniia (Fundamental research). 2012;11:61-65 (in Russ.).
  30. Tsvetkov VD. Serdtse, zolotoe sechenie i simmetriia (Heart, the golden section and symmetry). Pushchino; 1997. (in Russ.)
  31. http://meduniver.com/Medical/Physiology/357.html (accessed 20 December 2014) (in Russ.).
  32. Cheng L, Ivanova O, Fan H-H, Khoo MCK. An integrative model of respiratory and cardiovascular control in sleep-disordered breathing. Respiratory Physiology & Neurobiology. 2010;174:4-28. doi: 10.1016/j.resp.2010.06.001.
  33. Kiselev IN, Semisalov BV, Biberdorf EA, Sharipov RN, Blokhin AM, Kolpakov FA. Modular Modeling of the Human Cardiovascular System. Matematicheskaya biologiya i bioinformatika (Mathematical Biology and Bioinformatics). 2012;7(2):703-736. doi: 10.17537/2012.7.703. (in Russ.).
  34. Krasnikov GV, Piskunova GM, Tankanag AV, Tiurina MI, Chemeris NK. Vestnik novykh meditsinskikh tekhnologii (Journal of New Medical Technologie). 2010;XVII(4):15-17 (in Russ.).
  35. Tyurina MY, Krasnikov GV, Tankanag AV, Piskunova GM, Chemeris NK. Formation of the respiratory-associated blood flow oscillations in the microvascular bed of the human skin under controlled breath conditions. Regionarnoe krovoobrashchenie i mikrotsirkuliatsiia (Regional Haemodynamics and Microcirculation). 2011;3:31-37 (in Russ.).
  36. Seydnejad SR, Kitney RI. Modeling of Mayer Waves Generation Mechanisms. IEEE Eng. Med. Biol. Mag. 2001;20(2):92-100. doi: 10.1109/51.917729.
  37. Ursino M, Magosso E. Role of short term cardiovascular regulation in heart rate variability: a modeling study. Am. J. Physiol. Heart Circ. Physiol. 2003;284. P. H1473-H1494.
  38. Grinchenko VT, Rudnitskii AG. Akustichnii visnik. (Acoustic bulletin). 2006;9(3):16-26. (in Ukr.).
  39. Yildiz M, Ider YZ. Model based and experimental investigation of respiratory effect on the HRV power spectrum. Physiol. Meas. 2006;27:973-988. doi: 10.1088/0967-3334/27/10/004.
  40. Grinevich AA, Tankanag AV, Chemeris NK. The study of the dependence of the human heart rate from the frequency of controlled breathing. Matematicheskaya biologiya i bioinformatika (Mathematical Biology and Bioinformatics). 2013;8(2):537-552. doi: 10.17537/2013.8.537. (in Russ.).
  41. Krupatkin AI. Blood flow oscillations at a frequency of about 0.1 Hz in skin microvessels do not reflect the sympathetic regulation of their tone. Human Physiology. 2009;35(2):183-191. doi: 10.1134/S036211970902008X.

 

Table of Contents Original Article
Math. Biol. Bioinf.
2014;9(2):341-358
doi: 10.17537/2014.9.341
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024