Russian version English version
Volume 9   Issue 2   Year 2014
Vitvitsky A.A.

Computer Simulation of Self-Organization in the Bacterial MinCDE System

Mathematical Biology & Bioinformatics. 2014;9(2):453-463.

doi: 10.17537/2014.9.453.


  1. Simulating Complex Systems by Cellular Automata. Understanding complex Systems. Ed. Hoekstra A.G., Kroc J., Sloot P.M.A. Berlin: Springer; 2010.
  2. Bandman OL. Implementation of Large-Scale Cellular Automata Models on Multi-Core Computers and Clusters. In: High Performance Computing and Simulation (HPCS), 2013 Int. Conf. IEEE Conference Publications. 2013. P. 304-310.
  3. Lutkenhaus J. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu. Rev. Biochem. 2007;76:539-562. doi: 10.1146/annurev.biochem.75.103004.142652
  4. Loose M, Fischer-Friedrich E, Herold C, Kruse K, Schwille P. Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nat. Struct. Mol. Biol. 2011;18:577-583. doi: 10.1038/nsmb.2037
  5. Ivanov V, Mizuuchi K. Multiple modes of interconverting dynamic pattern formation by bacterial cell division proteins. Proc. Natl. Acad. Sci. USA. 2010;107:8071-8078. doi: 10.1073/pnas.0911036107
  6. Lackner L, Raskin D, Boer P. ATP-dependent interactions between Escherichia coli Min proteins and the phospholipid membrane in vitro. J. Bacteriol. 2003;185:735-749. doi: 10.1128/JB.185.3.735-749.2003
  7. Loose M. Spatial Regulators for Bacterial Cell Division Self-Organize into Surface Waves in Vitro. Science. 2008;320:789-792. doi: 10.1126/science.1154413
  8. Fange D, Elf J. Noise-induced Min phenotypes in E. coli. PLoS Comput. Biol. 2006;2(6):637-648. doi: 10.1371/journal.pcbi.0020080
  9. Lutkenhaus J, Sundaramoorthy M. MinD and role of the deviant Walker A motif, dimerization and membrane binding in oscillation. Mol. Microbiol. 2003;48:295-303. doi: 10.1046/j.1365-2958.2003.03427.x
  10. Leonard T, Butler PJ, Lowe J. Bacterial chromosome segregation: Structure and DNA binding of the Soj dimer – a conserved biological switch. EMBO. 2005;24:270-282. doi: 10.1038/sj.emboj.7600530
  11. Raskin D, de Boer P. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl. Acad. Sci. USA. 1999;96:4971-4976. doi: 10.1073/pnas.96.9.4971
  12. Hu Z, Lutkenhaus J. Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol. Microbiol. 1999;34:82-90. doi: 10.1046/j.1365-2958.1999.01575.x
  13. Fu X, Shih YL, Zhang Y, Rotheld LI. The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle. Proc. Natl. Acad. Sci. USA. 2001;98:980-985. doi: 10.1073/pnas.98.3.980
  14. Hale CA, Meinhardt H, de Boer P. Dynamic localization cycle of the cell division regulator MinE in Escherichia coli. EMBO. 2001;20:1563-1572. doi: 10.1093/emboj/20.7.1563
  15. Von-Neumann J. Theory of self-reproducing automata. USA: University of Illinois; 1966. 403 p.
  16. Achasova S, Bandman O, Markova V, Piskunov S. Parallel substitution algorithm. Theory and application. Singapore: World Scientific; 1994. 180 p. doi: 10.1142/9789814354073
  17. Bandman O. Cellular Automata Composition Techniques for Spatial Dynamics Simulation. In: Simulating Complex Systems by Cellular Automata. Understanding complex Systems. Ed. Hoekstra A. et al. Berlin: Springer; 2010. P. 81-115. doi: 10.1007/978-3-642-12203-3_5
  18. Toffolli T, Margolus N. Cellular Automata Machines: A New Environment for Modeling. USA: MIT Press; 1987. 260 p.
  19. Bandman O. Cellular Automata Diffusion Models for Multicomputer Implementation. Bull. Nov. Comp. Center, Comp. Science. 2014;36:21-31.
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2014.9.453
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2022