Russian version English version
Volume 9   Issue 2   Year 2014
Astakhova T.V., Roytberg M.A., Tsitovich I.I., Yakovlev V.V.

Regularities Related to Introns Lengths Distribution

Mathematical Biology & Bioinformatics. 2014;9(2):482-490.

doi: 10.17537/2014.9.482.


  1. Fickett JW. The gene identification problem: an overview for developers. Computer & Chemistry. 1996;20:103.
  2. Burge CB, Karlin S. Finding the genes in genomic DNA. Curr. Opin. Struct. Biol. 1998;8:346-354. doi: 10.1016/S0959-440X(98)80069-9
  3. Shchepetkova IL, Gelfand MS. Some statistical features of vertebrate and invertebrate splicing sites. Biophysics. 1997;42(1):90-91.
  4. Moss SP, Joyce DA, Humphries S, Tindall KJ, Lunt DH. Comparative analysis of teleost genome sequences reveals an ancient intron size expansion in the zebrafish lineage. Genome Biol. Evol. 2011;3:1187-1196. doi: 10.1093/gbe/evr090
  5. Chen D, Zhang J. Analysis of intron sequence features associated with transcriptional regulation in human genes. PLoS ONE. 2012;7(10). Article No. e46784.
  6. Rogozin IB, Carmel L, Csuros M, Koonin EV. Origin and evolution of spliceosomal introns. Biol. Direct. 2012;7:11. doi: 10.1186/1745-6150-7-11
  7. Bradnam KR, Korf I. Longer first introns are a general property of eukaryotic gene structure. PLoS ONE. 2008;3(8). Article No. e3093. doi: 10.1371/journal.pone.0003093
  8. Shuang W, Zhang Z, Jun YU. Systematic analysis of intron size and abundance parameters indiverse lineages. SCIENCE CHINA Life Sciences. 2013;56(10):968-974. doi: 10.1007/s11427-013-4540-y
  9. Shepard S, McCreary M, Fedorov A. The peculiarities of large intron splicing in animals. PLoS ONE. 2009;4(11). Article No. e7853. doi: 10.1371/journal.pone.0007853
  10. Farlow A, Dolezal M, Hua L, Schlotterer C. The genomic signature of splicing-coupled selection differs between long and short introns. Mol. Biol. Evol. 2012;29(1):21-24. doi: 10.1093/molbev/msr201
  11. Marais G, Nouvellet P, Keightley PD, Charlesworth B. Intron size and exon evolution in drosophila. Genetics. 2005;170:481-485. doi: 10.1534/genetics.104.037333
  12. Vinogradov A. “Genome design” model: Evidence from conserved intronic sequence in human–mouse comparison. Genome Res. 2006;16(3):347-54. doi: 10.1101/gr.4318206
  13. Catania F, Lynch M. A simple model to explain evolutionary trends of eukaryotic gene architecture and expression: How competition between splicing and cleavage/polyadenylation factors may affect gene expression and splice-site recognition in eukaryotes. Bioessays. 2013;35(6):561-570. doi: 10.1002/bies.201200127
  14. Zhu L, Zhang Y, Zhang W, Yang S, Chen J-Q, Tian D. Patterns of exon-intron architecture variation of genes in eukaryotic genomes. BMC Genomics. 2009;10:47-53. doi: 10.1186/1471-2164-10-47
  15. Long M, Rosenberg C, Gilbert W. Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl. Acad. Sci. 1995;92(26):12495-12499. doi: 10.1073/pnas.92.26.12495
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2014.9.482
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2022