Russian version English version
Volume 15   Issue 2   Year 2020
Medvedev A.E.

Method of Constructing an Asymmetric Human Bronchial Tree in Normal and Pathological Cases

Mathematical Biology & Bioinformatics. 2020;15(2):148-157.

doi: 10.17537/2020.15.148.

References

  1. Weibel E.R. Morphometry of the Human Lung. Springer Verlag, Berlin, 1963. doi: 10.1007/978-3-642-87553-3
  2. Medvedev A.E., Gafurova P.S. Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases. Mathematical Biology and Bioinformatics. 2019;14(2):635–648. doi: 10.17537/2019.14.635
  3. Zhao Y., Lieber B.B. Steady inspiratory flow in a model symmetric bifurcation. ASME Journal of Biomechanical Engineering. 1994;116:488–496. doi: 10.1115/1.2895800
  4. Zhao Y., Brunskill C.T., Lieber B.B. Inspiratory and expiratory steady flow analysis in a model symmetrically bifurcating airway. ASME Journal of Biomechanical Engineering. 1997;119:52–58. doi: 10.1115/1.2796064
  5. Hegedűs C.J., Balásházy I., Farkas Á. Detailed mathematical description of the geometry of airway bifurcations. Respiratory Physiology & Neurobiology. 2004;141(1):99–114. doi: 10.1016/j.resp.2004.03.004
  6. Heistracher T., Hofmann W. Physiologically realistic models of bronchial airway bifurcations. J. Aerosol Sci. 1995;26(3):497–509.
  7. Ertbruggen C., Hirsch C., Paiva M. Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics. J. Appl. Physiol. 2005;98:970–980. doi: 10.1152/japplphysiol.00795.2004
  8. Tena A.F., Casan P., Fernández J., Ferrera C., A. Marcos A. Characterization of particle deposition in a lung model using an individual path. EPJ Web of Conferences. 2013;45. Article No. 01079.  doi: 10.1051/epjconf/20134501079
  9. Tena A.F., Fernández J., Álvarez E., Casan P., Walters D.K. Design of a numerical model of lung by means of a special boundary condition in the truncated branches. International Journal for Numerical Methods in Biomedical Engineering. 2017;33(6). Article No. e2830. doi: 10.1002/cnm.2830
  10. Tena A.F., Francos J.F., Álvarez E., Casan P.A. A three dimensional in SILICO model for the simulation of inspiratory and expiratory airflow in humans. Engineering Applications of Computational Fluid Mechanics. 2015;9(1):187–198. doi: 10.1080/19942060.2015.1004819
  11. Gemci T., Ponyavin V., Chen Y., Chen H., Collins R. CFD Simulation of Airflow in a 17-Generation Digital Reference Model of the Human Bronchial Tree. Series on Biomechanics. 2007;23(1):5–18.
  12. Gemci T., Ponyavin V., Chen Y., Chen H., Collins R. Computational model of airflow in upper 17 generations of human respiratory tract. Journal of Biomechanics. 2008;41:2047–2054. doi: 10.1016/j.jbiomech.2007.12.019
  13. Trusov P.V., Zaitseva N.V., Tsinker M.Yu. Modeling of human breath: conceptual and mathematical statements. Mathematical Biology and Bioinformatics. 2016;11(1):64–80. doi: 10.17537/2016.11.64
  14. Trusov P.V., Zaitseva N.V., Tsinker M.Yu., Babushkina A.V. Modelling dusty air flow in the human respiratory tract. Ross. Zh. Biomekhaniki. 2018;22(3):301–314. doi: 10.15593/RZhBiomeh/2018.3.03
  15. Choi J. Multiscale numerical analysis of airflow in CT-based subject specific breathing human lungs: PhD Dissertation. Iowa: University of Iowa, 2011. 259 p.
  16. Ham A.W., Cormack D.H. Ham’s Histology. Philadelphia, Lippencott, 1979.
  17. Anthony L. Mescher Junqueira's. Basic Histology: Text and Atlas. 13th Edition. New York: McGraw Hill Medical, 2013. 560 p.
Table of Contents Original Article
Math. Biol. Bioinf.
2020;15(2):148-157
doi: 10.17537/2020.15.148
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)
References Translation into Russian
Math. Biol. Bioinf.
2020, 15(Suppl):t21-t31
doi: 10.17537/2020.15.t21

Full text (rus., pdf)

 

  Copyright IMPB RAS © 2005-2022