Russian version English version
Volume 15   Issue 2   Year 2020
Neverova G.P., Zhdanova O.L., Abakumov A.I.

Discrete-Time Model of Seasonal Plankton Bloom

Mathematical Biology & Bioinformatics. 2020;15(2):235-250.

doi: 10.17537/2020.15.235.

References

  1. Chakraborty S., Feudel U. Harmful algal blooms: Combining excitability and competition. Theor. Ecol. 2014;7:221–237. doi: 10.1007/s12080-014-0212-1
  2. Medvinsky A.B., Nurieva N.I., Rusakov A.V., Bobyrev A.E., Burmensky V.A., Kriksunov E.A. Modelling aquatic communities: Trophic interactions and the body mass-and-age structure of fish populations give rise to long-period variations in fish population size. Rus. J. Num. Anal. Math. Model. 2015;30(1):55–70. doi: 10.1515/rnam-2015-0006
  3. Rusakov A.V., Bobyrev A.E., Burmensky V.A., Kriksunov E.A., Nurieva N.I., Medvinsky A.B. An integer-valued mathematical model of lake communities: Chaotic and long-period oscillations in the fish population size. Computer Research and Modeling. 2016;8(2):229–239. doi: 10.20537/2076-7633-2016-8-2-229-239
  4. Paerl H.W., Huisman J. Climate – blooms like it hot. Science. 2008;320:57–58. doi: 10.1126/science.1155398
  5. Charlson R.J., Lovelock J. E., Andreae M.O., Warren S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature. 1987;326:655–661. doi: 10.1038/326655a0
  6. Simo R. Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends in Ecology and Evolution. 2001;16:287–294. doi: 10.1016/S0169-5347(01)02152-8
  7. Flynn K.J. Castles built on sand: dysfunctionality in plankton models and the inadequacy of dialogue between biologists and modellers. J. Plankton Res. 2005;27:1205–1210. doi: 10.1093/plankt/fbi099
  8. Ivashchenko I.K., Igumnova E.M., Lazarchuk I.P., Timchenko I.E. Ekologicheskaia bezopasnost' pribrezhnoi i shel'fovoi zon i kompleksnoe ispol'zovanie resursov shel'fa (Ecological safety of coastal and shelf zones of sea). 2010;23:61–69.(in Russ.).
  9. Abakumov A.I., Izrailsky Yu.G. Environment Influence on the Phytoplankton Distribution in a Basin. Mathematical Biology and Bioinformatics. 2012;7(1):274–283. doi: 10.17537/2012.7.274
  10. Abakumov A.I., Izrailsky Y.G. Model method of vertical chlorophyll concentration reconstruction from satellite data. Computer Research and Modeling. 2013;5(3):473–482. doi: 10.20537/2076-7633-2013-5-3-473-482
  11. Kartushinsky A.V. Numerical Modeling of the Hydrophysical Influence Effects on the Phytoplankton Distribution. Mathematical Biology and Bioinformatics. 2012;7(1):112–124. doi: 10.17537/2012.7.112
  12. Abakumov A., Pak S. Model method for recovery of phytoplankton condition in the vertical water column on the satellite data about water surface. Information Science and Control Systems. 2014(3):23–32.
  13. Abakumov A.I., Pak S.Ya., Morozov M.A., Tynybekov A.K. Model estimation of phytoplankton biomassof lake Issyk-Kul using remote sensing data. Inland Water Biology. 2019;4:111-118. doi: 10.1134/S1995082919060026
  14. Shambarova Yu.V., Stepochkin I.E., Zakharkov S.P. Verification of VGPM and K&I models of primary production in the northwestern part of the Japan Sea using shipboard and satellite data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Iz Kosmosa (Current Problems in Remote Sensing of the Earth from Space). 2019;16(2):186–195. doi: 10.21046/2070-7401-2019-16-2-186-195
  15. Volterra V. Matematicheskaia teoriia bor'by za sushchestvovanie (Mathematical theory of the struggle for existence). Moscow, 2004. 288 p. (Translation from French: Volterra V. Leçons sur la théorie mathématique de la lutte pour la vie. Paris: Gauthier-Villars, 1931).
  16. Huppert A., Blasius B., Olinky R., Stone L. A model for seasonal phytoplankton blooms. J. Theor. Biol. 2005;236(3):276–290. doi: 10.1016/j.jtbi.2005.03.012
  17. Kartal S., Kar M., Kartal N., Gurcan F. Modelling and analysis of a phytoplankton–zooplankton system with continuous and discrete time. Mathematical and Computer Modelling of Dynamical Systems. 2016. doi: 10.1080/13873954.2016.1204323
  18. Franks P.J.S. NPZ models of plankton dynamics: their construction, coupling to physics, and application. Journal of Oceanography. 2002;58:379–387. doi: 10.1023/A:1015874028196
  19. Montagnes D.J.S., Fenton A. Prey-abundance affects zooplankton assimilation efficiency and the outcome of biogeochemical models. Ecological Modelling. 2012;243:1–7. doi: 10.1016/j.ecolmodel.2012.05.006
  20. Edwards C.A., Batchelder H.P., Powell T.M. Modeling microzooplankton and macrozooplankton dynamics within a coastal upwelling system. Journal of Plankton Research. 2000;22(9):1619–1648. doi: 10.1093/plankt/22.9.1619
  21. Neverova G.P., Zhdanova O.L., Kolbina E.A., Abakumov A.I. A plankton community: a zooplankton effect in phytoplankton dynamics. Computer Research and Modeling. 2019;11(4):751–768. doi: 10.20537/2076-7633-2019-11-4-751-768
  22. Giricheva E. The Influence of Trophic Interactions in the Plankton Community on Its Spatiotemporal Dynamics. Mathematical Biology and Bioinformatics. 2019;14(2):393–405. doi: 10.17537/2019.14.393
  23. Anderson D.M., Kaoru Y., White A.W. Estimated Annual Economic Impacts Form Harmful Algal Blooms (HABs) in the United States. Sea Grant Woods Hole: MA, 2000. doi: 10.1575/1912/96
  24. Walsh J.J., Penta B., Dieterle D.A., Bissett W.P. Predictive ecological modeling of harmful algal blooms. Hum. Ecol. Risk Assess. Int. J. 2001;7:1369–1383. doi: 10.1080/20018091095069
  25. Smayda T.J. In: Noval Phytoplankton Blooms: Causes and Impact of Recurrent Brown Tides and Other Unusual Blooms. Ed. Cosper E.M. et al. Springer: Berlin, 1989. P. 449–483. doi: 10.1029/CE035p0449
  26. Hallegraeff G.M. A review of harmful algal blooms and their apparent global increase. Phycologia. 1993;32:79–99. doi: 10.2216/i0031-8884-32-2-79.1
  27. Chattopadhayay J., Sarkar R.R., Mandal S. Toxin-producing plankton may act as a biological control for planktonic blooms–field study and mathematical modelling. J. Theor. Biol. 2002;215:333–344. doi: 10.1006/jtbi.2001.2510
  28. Huppert A., Blasius B., Stone L. A model of phytoplankton blooms. The Am. Nat. 2002;159:156–171. doi: 10.1086/324789
  29. Huppert A., Olinky R., Stone L. Bottom-up excitable models of phytoplankton blooms. Bull. Math. Biol. 2004;66:865–878. doi: 10.1016/j.bulm.2004.01.003
  30. Rehim M., Zhang Z., Muhammadhaji A. Mathematical analysis of a nutrient–plankton system with delay. Springer Plus. 2016;5(1):1055. doi: 10.1186/s40064-016-2435-7
  31. Saha T., Bandyopadhyay M. Dynamical analysis of toxin producing phytoplankton-zooplankton interactions. Nonlinear Analysis. Real World Applications. 2009;10:314–332. doi: 10.1016/j.nonrwa.2007.09.001
  32. Gakkhar S., Singa A. Effects of the delay and seasonality on toxin producing phytoplankton-zooplankton system. International Journal of Biomathematics. 2012;5. Article No. 1250047. doi: 10.1142/S1793524511001891
  33. Rehim M., Wu W., Muhammadhaji A. On the dynamical behavior of toxic-phytoplankton-zooplankton model with delay. Discrete Dynamics in Nature and Society. 2015. Article No. 756315. doi: 10.1155/2015/756315
  34. Frisman Y.Y., Kulakov M.P., Revutskaya O.L., Zhdanova O.L., Neverova G.P. The key approaches and review of current researches on dynamics of structured and interacting populations. Computer Research and Modeling. 2019;11(1):119–151. doi: 10.20537/2076-7633-2019-11-1-119-151
  35. Chatterjee S., Venturino E., Chakraborty S., Chattopadhyay J. A simple mathematical model for seasonal planktonic blooms. Mathematical methods in the applied sciences. 2009;32(13):1738–1750. doi: 10.1002/mma.1109
  36. Graneli E., Johansson N. Increase in the production of allelopathic Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae. 2003;2:135–145. doi: 10.1016/S1568-9883(03)00006-4
  37. Shilo M. Formation and mode of action of algal toxins. Bacteriological Reviews. 1967;31:180–193. doi: 10.1128/br.31.3.180-193.1967
  38. Johansson N., Graneli E. In: Harmful and Toxic Algal Blooms. Ed. Yasumoto T., Oshima Y., Fukuyo Y. Intergovernmental Oceanographic Commission of UNESCO: Paris, 1996. P. 277–280.
  39. Johansson N., Graneli E. Influence of different nutrient conditions on cell density, chemical composition and toxicity of Prymnesium parvum (Haptophyta) in semi-continuous cultures. Journal of the Experimental Marine Biology and Ecology. 1999;239:243–258. doi: 10.1016/S0022-0981(99)00048-9
  40. Reguera B., Oshima Y. In: Toxic Marine Phytoplankton. Ed. Graneli E.et al. Elsevier: New York, 1990. P. 316–319.
  41. Bates S.S., DeFreitas A.S.W., Milley J.E., Pocklington R., Quilliam M.A., Smith J.C., Worms J. Controls on domain acid production by the diatom Nitzchia pungens f. multiseries in cultures: nutrients and irradiance. Can. J. Fish. Aquat. Sci. 1991;48:1136–1144. doi: 10.1139/f91-137
  42. Bates S.S., Worms J., Smith J.C. Effects of ammonium and nitrate on growth and domoic acid production by Nitzschia pungens in batch culture. Can. J. Fish. Aquat. Sci. 1992;50:1248–1254. doi: 10.1139/f93-141
  43. Bates S.S., Lege C., Smith K.M. In: Harmful and Toxic Algal Blooms. Ed. Yasumoto T., Oshima Y., Fukuyo Y. Intergovernmental Oceanographic Commission of UNESCO: Paris, 1996. P. 163–166.
  44. Igarashi T., Satake M., Yasumoto T. Prymnesin-2: a potent ichtyotoxic and haemolytic glycoside isolated from the red tide algae Prymnesium parvum. Journal of the American Chemical Society. 1996;118:79–480. doi: 10.1021/ja9534112
  45. Pohnert G. Diatom/Copepod interactions in plankton: the indirect chemical defense of unicellular algae. Chembiochem. 2005;6:946–959. doi: 10.1002/cbic.200400348
  46. Kirk K., Gilbert J. Variations in herbivore response to chemical defenses: zooplankton foraging on toxic cyanobacteria. Ecology. 1992;73:2208–2217. doi: 10.2307/1941468
  47. Turner J.T., Tester P.A. Toxic marine phytoplankton, zooplankton, zooplankton grazers, and pelagic food webs. Limnology and Oceanography. 1997;42:1203–1214. doi: 10.4319/lo.1997.42.5_part_2.1203
  48. Van Donk E., Lurling M., Lampert W. In: The Ecology and Evolution of Inducible Defenses. Ed. Tollrian R., Harvell C.D. Princeton University Press: Princeton, 1999. P. 89–103. doi: 10.1515/9780691228198-008
  49. Watanabe M.F., Park H.D., Watanabe M. Composition of Microcystis species and heptapeptide toxins. Verh International Verein Limnology. 1994;25:2226–2229. doi: 10.1080/03680770.1992.11900602
  50. Gill C.W., Harris R.P. Behavioural responses of the copepods Calanus Helgolandicus and Temora longicornis to dinoflagellate diets. Journal of the Marine Biological Association of the United Kingdom. 1987;67:785–801. doi: 10.1017/S0025315400057039
  51. DeMott W.R., Moxter F. Foraging on cyanobacteria by copepods: responses to chemical defenses and resource abundance. Ecology. 1991;72:1820–1834. doi: 10.2307/1940981
  52. Revutskaya O.L., Kulakov M.P., Frisman E.Ya. Bistability and Bifurcations in Modified Nicholson-Bailey Model with Age-Structure for Prey. Mathematical Biology and Bioinformatics. 2019;14(1):257–278. doi: 10.17537/2019.14.257
  53. Tyutyunov Yu.V., Titova L.I., Surkov F.A., Bakaeva E.N. Trophic Function of Phytophagous Rotifers (Rotatoria). Experiment and modelling. Zh. Obshch. Biol. 2010;71(1):52–62 (in Russ.).
  54. Kuznetsov A.P., Savin A.V., Sedova Iu.V., Tiuriukina L.V. Bifurkatsii otobrazhenii (Bifurcations of Mappings). Saratov; 2012. 196 p. (in Russ.).
Table of Contents Original Article
Math. Biol. Bioinf.
2020;15(2):235-250
doi: 10.17537/2020.15.235
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024