Russian version English version
Volume 15   Issue 2   Year 2020
Shevela E.Y.1, Markova E.V.1,2, Knyazheva M.A.1, Proskurina A.S.3, Efremov Y.R.2,3, Molodtsov V.V.2,4, Seledtsov I.A.4, Ostanin A.A.1, Bogachev S.S.3, Kolchanov N.A.3, Chernykh E.R.1

Changes in the Hippocampal Genes Transcriptome in Depression Model Mice upon Intranasal Exposure to M2 Macrophage Secretome Factors

Mathematical Biology & Bioinformatics. 2020;15(2):357-393.

doi: 10.17537/2020.15.357.

References

  1. Lux V., Kendler K.S. Deconstructing major depression: A validation study of the DSM-IV symptomatic criteria. Psychol. Med. 2010;40:1679–1690.
  2. Zanin R.F., Braganhol E., Bergamin L.S., Campesato L.F.I., Filho A.Z., Moreira J.C.F., Morrone F.B., Sévigny J., Schetinger M.R.C., de Souza Wyse A.T., Battastini A.M.O. Differential macrophage activation alters the expression profile of NTPDase and ecto-5’-nucleotidase. PLoS One. 2012;7:e31205. doi: 10.1371/journal.pone.0031205
  3. Di Virgilio F., Ceruti S., Bramanti P., Abbracchio M.P. Purinergic signalling in inflammation of the central nervous system. Trends Neurosci. 2009;32:79–87. doi: 10.1016/j.tins.2008.11.003
  4. Abbracchio M.P., Ceruti S. P1 receptors and cytokine secretion. Purinergic Signal. 2007;3:13–25. doi: 10.1007/s11302-006-9033-z
  5. Yegutkin G.G., Henttinen T., Samburski S.S., Spychala J., Jalkanen S. The evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells. Biochem. J. 2002;367:121–128.
  6. Linden J. Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu. Rev. Pharmacol. Toxicol. 2001;41:775–787. doi: 10.1146/annurev.pharmtox.41.1.775
  7. Wang Y.-M., Liu Z.-Y., Ai Y.-H., Zhang L.-N., Zou Y., Peng Q.-Y. Blocking the CD38/cADPR pathway plays a double-edged role in LPS stimulated microglia. Neuroscience. 2017;361:34–42. doi: 10.1016/j.neuroscience.2017.08.010
  8. Cauwels A., Rogge E., Vandendriessche B., Shiva S., Brouckaert P. Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell Death Dis. 2014;5. doi: 10.1038/cddis.2014.70
  9. Bours M.J.L., Swennen E.L.R., Di Virgilio F., Cronstein B.N., Dagnelie P.C. Adenosine 5’-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther. 2006;112:358–404.
  10. Solle M., Labasi J., Perregaux D.G., Stam E., Petrushova N., Koller B.H., Griffiths R.J., Gabel C.A. Altered cytokine production in mice lacking P2X(7) receptors. J. Biol. Chem. 2001;276:125–132.
  11. Coutinho-Silva R., Perfettini J.L., Persechini P.M., Dautry-Varsat A., Ojcius D.M. Modulation of P2Z/P2X7 receptor activity in macrophages infected with Chlamydia psittaci. Am. J. Physiol. - Cell Physiol. 2001;280. doi: 10.1152/ajpcell.2001.280.1.C81
  12. Haskó G., Cronstein B.N. Adenosine: An endogenous regulator of innate immunity. Trends Immunol. 2004;25:33–39. doi: 10.1016/j.it.2003.11.003
  13. Yamaguchi H., Maruyama T., Urade Y., Nagata S. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells. eLife. 2014;3:e02172. doi: 10.7554/eLife.02172
  14. Dissing-Olesen L., LeDue J.M., Rungta R.L., Hefendehl J.K., Choi H.B., MacVicar B.A. Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J. Neurosci. 2014;34:10511–10527. doi: 10.1523/JNEUROSCI.0405-14.2014
  15. Calovi S., Mut-Arbona P., Sperlágh B. Microglia and the Purinergic Signaling System. Neuroscience. 2019;405:137–147. doi: 10.1016/j.neuroscience.2018.12.021
  16. Janks L., Sharma C.V.R., Egan T.M. A central role for P2X7 receptors in human microglia. J. Neuroinflammation. 2018;15:325. doi: 10.1186/s12974-018-1353-8
  17. Tay T.L., Savage J.C., Hui C.W., Bisht K., Tremblay M.È. Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J. Physiol. 2017;595:1929–1945. doi: 10.1113/JP272134
  18. Liu Y., Alahiri M., Ulloa B., Xie B., Sadiq S.A. Adenosine A2A receptor agonist ameliorates EAE and correlates with Th1 cytokine-induced blood brain barrier dysfunction via suppression of MLCK signaling pathway. Immun. Inflamm. Dis. 2018;6:72–80.
  19. Korn T., Kallies A. T cell responses in the central nervous system. Nat. Rev. Immunol. 2017;17:179–194.
  20. Ogawa Y., Furusawa E., Saitoh T., Sugimoto H., Omori T., Shimizu S., Kondo H., Yamazaki M., Sakuraba H., Oishi K. Inhibition of astrocytic adenosine receptor A2A attenuates microglial activation in a mouse model of Sandhoff disease. Neurobiol. Dis. 2018;118:142–154.
  21. Vuorimaa A., Rissanen E., Airas L. In Vivo PET Imaging of Adenosine 2A Receptors in Neuroinflammatory and Neurodegenerative Disease. Contrast Media Mol. Imaging. 2017;2017:6975841.
  22. Sakhno L.V., Shevela E.Y., Tikhonova M.A., Ostanin A.A., Chernykh E.R. The Phenotypic and Functional Features of Human M2 Macrophages Generated Under Low Serum Conditions. Scand. J. Immunol. 2016;83:151–159.
  23. Tye K.M., Mirzabekov J.J., Warden M.R., Ferenczi E.A., Tsai H.-C., Finkelstein J., Kim S.-Y., Adhikari A., Thompson K.R., Andalman A.S. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature. 2013;493:537–541. doi: 10.1038/nature11740
  24. Garcia-Garcia M., Yordanova J., Kolev V., Domínguez-Borràs J., Escera C. Tuning the brain for novelty detection under emotional threat: the role of increasing gamma phase-synchronization. Neuroimage. 2010;49:1038–1044. doi: 10.1016/j.neuroimage.2009.07.059
  25. Iannotti F.A., Di Marzo V., Petrosino S. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders. Prog. Lipid Res. 2016;62:107–128. doi: 10.1016/j.plipres.2016.02.002
  26. Xu J.-Y., Chen C. Endocannabinoids in synaptic plasticity and neuroprotection. Neuroscientist. 2015;21:152–168. doi: 10.1177/1073858414524632
  27. Heifets B.D., Castillo P.E. Endocannabinoid Signaling and Long-Term Synaptic Plasticity. Annu. Rev. Physiol. 2009;71:283–306. doi: 10.1146/annurev.physiol.010908.163149
  28. Maragakis N.J., Rothstein J.D. Glutamate transporters in neurologic disease. Arch. Neurol. 2001;58:365–370.
  29. Szydlowska K., Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010;47:122–129. doi: 10.1016/j.ceca.2010.01.003
  30. Mironova Yu.S., Zhukova N.G., Zhukova I.A., Alifirova V.M., Izhboldina O.P., Latypova A.V. Parkinson’s disease and glutamatergic system. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova (S.S. Korsakov Journal of Neurology and Psychiatry). 2018;118:138–142 (in Russ.). doi: 10.17116/jnevro201811851138
  31. Krishnadas R., Cavanagh J. Depression: An inflammatory illness? J. Neurol. Neurosurg. Psychiatry. 2012;83:495–502.
  32. Dantzer R., O’Connor J.C., Freund G.G., Johnson R.W., Kelley K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008;9:46–56.
  33. Babenko V.N., Smagin D.A., Galyamina A.G., Kovalenko I.L., Kudryavtseva N.N. Altered Slc25 family gene expression as markers of mitochondrial dysfunction in brain regions under experimental mixed anxiety/depression-like disorder. BMC Neurosci. 2018;19:79. doi: 10.1186/s12868-018-0480-6
  34. Almolda B., Costa M., Montoya M., González B., Castellano B. CD4 microglial expression correlates with spontaneous clinical improvement in the acute Lewis rat EAE model. J. Neuroimmunol. 2009;209:65–80. doi: 10.1016/j.jneuroim.2009.01.026
  35. Lau A., Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010;460:525–542. doi: 10.1007/s00424-010-0809-1
  36. Olney J.W. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science. 1969;164:719–721. doi: 10.1126/science.164.3880.719
  37. Petkova A.T., Leapman R.D., Guo Z., Yau W.-M., Mattson M.P., Tycko R. Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science. 2005;307:262–265. doi: 10.1126/science.1105850
  38. Paoletti P., Bellone C., Zhou Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 2013;14:383–400.
  39. Bredt D.S., Nicoll R.A. AMPA receptor trafficking at excitatory synapses. Neuron. 2003;40:361–379. doi: 10.1016/S0896-6273(03)00640-8
  40. Halpain S., Girault J.A., Greengard P. Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices. Nature. 1990;343:369–372. doi: 10.1038/343369a0
  41. Nishi A., Bibb J.A., Snyder G.L., Higashi H., Nairn A.C., Greengard P. Amplification of dopaminergic signaling by a positive feedback loop. Proc. Natl. Acad. Sci. USA. 2000;97:12840–12845. doi: 10.1073/pnas.220410397
  42. Belkhiri A., Zhu S., El-Rifai W. DARPP-32: from neurotransmission to cancer. Oncotarget. 2016;7:17631–17640. doi: 10.18632/oncotarget.7268
  43. Yagishita S., Hayashi-Takagi A., Ellis-Davies G.C.R., Urakubo H., Ishii S., Kasai H. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science. 2014;345:1616–1620. doi: 10.1126/science.1255514
  44. Nair A.G., Bhalla U.S., Hellgren Kotaleski J. Role of DARPP-32 and ARPP-21 in the Emergence of Temporal Constraints on Striatal Calcium and Dopamine Integration. PLoS Comput. Biol. 2016;12:e1005080. doi: 10.1371/journal.pcbi.1005080
  45. Chen Z., Trapp B.D. Microglia and neuroprotection. J. Neurochem. 2016;136:10–17.
  46. Masuda T., Sankowski R., Staszewski O., Prinz M. Microglia Heterogeneity in the Single-Cell Era. Cell Rep. 2020;30:1271–1281. doi: 10.1016/j.celrep.2020.01.010
  47. Wang N., Liang H., Zen K. Molecular mechanisms that influence the macrophage M1-M2 polarization balance. Front. Immunol. 2014;5:614.
  48. Zhang L., Zhang J., You Z. Switching of the Microglial Activation Phenotype Is a Possible Treatment for Depression Disorder. Front. Cell. Neurosci. 2018;12:306.
  49. Tang R.-H., Qi R.-Q., Liu H.-Y. Interleukin-4 affects microglial autophagic flux. Neural Regen. Res. 2019;14:1594–1602.
  50. Navarro G., Borroto-Escuela D., Angelats E., Etayo Í., Reyes-Resina I., Pulido-Salgado M., Rodríguez-Pérez A.I., Canela E.I., Saura J., Lanciego J.L. et al. Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer’s disease and levodopa-induced dyskinesia. Brain. Behav. Immun. 2018;67:139–151.
  51. Navarro G., Morales P., Rodríguez-Cueto C., Fernández-Ruiz J., Jagerovic N., Franco R. Targeting cannabinoid CB2 receptors in the central nervous system. Medicinal chemistry approaches with focus on neurodegenerative disorders. Front. Neurosci. 2016;10:406.
  52. Reyes-Resina I., Navarro G., Aguinaga D., Canela E.I., Schoeder C.T., Załuski M., Kieć-Kononowicz K., Saura C.A., Müller C.E., Franco R. Molecular and functional interaction between GPR18 and cannabinoid CB2 G-protein-coupled receptors. Relevance in neurodegenerative diseases. Biochem. Pharmacol. 2018;157:169–179.
  53. Muccioli G.G., Xu C., Odah E., Cudaback E., Cisneros J.A., Lambert D.M., López Rodríguez M.L., Bajjalieh S., Stella N. Identification of a novel endocannabinoid-hydrolyzing enzyme expressed by microglial cells. J. Neurosci. 2007;27:2883–2889. doi: 10.1523/JNEUROSCI.4830-06.2007
  54. Blankman J.L., Simon G.M., Cravatt B.F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 2007;14:1347–1356.
  55. Cabral G.A., Raborn E.S., Griffin L., Dennis J., Marciano-Cabral F. CB 2 receptors in the brain: Role in central immune function. Br. J. Pharmacol. 2008;153:240–251.
  56. Walter L., Franklin A., Witting A., Wade C., Xie Y., Kunos G., Mackie K., Stella N. Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J. Neurosci. 2003;23:1398–1405. doi: 10.1523/JNEUROSCI.23-04-01398.2003
  57. Cristino L., Bisogno T., Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol. 2020;16:9–29.
  58. Lu H.C., MacKie K. An introduction to the endogenous cannabinoid system. Biol. Psychiatry. 2016;79:516–525.
  59. Savinainen J.R., Saario S.M., Laitinen J.T. The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors. Acta Physiol. (Oxf). 2012;204:267–276.
  60. Franco R., Reyes-Resina I., Aguinaga D., Lillo A., Jiménez J., Raïch I., Borroto-Escuela D.O., Ferreiro-Vera C., Canela E.I., Sánchez de Medina V. et al. Potentiation of cannabinoid signaling in microglia by adenosine A2A receptor antagonists. Glia. 2019;67:2410–2423. doi: 10.1002/glia.23694
  61. Chanda P.K., Gao Y., Mark L., Btesh J., Strassle B.W., Lu P., Piesla M.J., Zhang M.-Y., Bingham B., Uveges A. et al. Monoacylglycerol lipase activity is a critical modulator of the tone and integrity of the endocannabinoid system. Mol. Pharmacol. 2010;78:996–1003.
  62. Schlosburg J.E., Blankman J.L., Long J.Z., Nomura D.K., Pan B., Kinsey S.G., Nguyen P.T., Ramesh D., Booker L., Burston J.J. et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat. Neurosci. 2010;13:1113–1119.
  63. Szabó G.G., Lenkey N., Holderith N., Andrási T., Nusser Z., Hájos N. Presynaptic calcium channel inhibition underlies CB₁ cannabinoid receptor-mediated suppression of GABA release. J. Neurosci. 2014;34:7958–7963.
  64. Gordon S., Martinez F.O. Alternative activation of macrophages: Mechanism and functions. Immunity. 2010;32:593–604. doi: 10.1016/j.immuni.2010.05.007
  65. Zhou J., Chen J., Xu W., Liu Y., Song Z., Wen Z., Jian X., Yu J., Ma X., Wang Z. et al. Common variants in SATB2 are associated with schizophrenia in Uygur Chinese population. Psychiatr. Genet. 2019;29:120–126.
  66. Kawahara K., Suenobu M., Yoshida A., Koga K., Hyodo A., Ohtsuka H., Kuniyasu A., Tamamaki N., Sugimoto Y., Nakayama H. Intracerebral microinjection of interleukin-4/interleukin-13 reduces β-amyloid accumulation in the ipsilateral side and improves cognitive deficits in young amyloid precursor protein 23 mice. Neuroscience. 2012;207:243–260. doi: 10.1016/j.neuroscience.2012.01.049
  67. Jin M.-M., Wang F., Qi D., Liu W.-W., Gu C., Mao C.-J., Yang Y.-P., Zhao Z., Hu L.-F., Liu C.-F. A Critical Role of Autophagy in Regulating Microglia Polarization in Neurodegeneration. Front. Aging Neurosci. 2018;10:378.
  68. Ji J., Xue T.-F., Guo X.-D., Yang J., Guo R.-B., Wang J., Huang J.-Y., Zhao X.-J., Sun X.-L. Antagonizing peroxisome proliferator-activated receptor γ facilitates M1-to-M2 shift of microglia by enhancing autophagy via the LKB1-AMPK signaling pathway. Aging Cell. 2018;17:e12774. doi: 10.1111/acel.12774
  69. Ries M., Sastre M. Mechanisms of Aβ clearance and degradation by glial cells. Front. Aging Neurosci. 2016;8:160.
  70. Braun N., Sévigny J., Robson S.C., Enjyoji K., Guckelberger O., Hammer K., Di Virgilio F., Zimmermann H. Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/cd39 expression to microglia and vasculature of the brain. Eur. J. Neurosci. 2000;12:4357–4366.
  71. Kravchenko P., Oleinik E. The system of regulatory T cells and autoimmunity. Transactions of the Karelian Research Centre of the Russian Academy of Sciences. 2013:18–30 (in Russ.).
  72. Tashireva L.A., Perelmuter V.M., Denisov E.V., Savelieva O.E., Kaygorodova E.V., Zavyalova M.V., Manskikh V.N. Types of immune-inflammatory responses as a reflection of cell–cell interactions under conditions of tissue regeneration and tumor growth. Biochemistry (Moscow). 2017;82(5):542–555. doi: 10.1134/S0006297917050029
  73. Wang L.-M., Zhang Y., Li X., Zhang M.-L., Zhu L., Zhang G.-X., Xu Y.-M. Nr4a1 plays a crucial modulatory role in Th1/Th17 cell responses and CNS autoimmunity. Brain. Behav. Immun. 2018;68:44–55.
  74. Araujo D.J., Toriumi K., Escamilla C.O., Kulkarni A., Anderson A.G., Harper M., Usui N., Ellegood J., Lerch J.P., Birnbaum S.G. et al. Foxp1 in forebrain pyramidal neurons controls gene expression required for spatial learning and synaptic plasticity. J. Neurosci. 2017;37:10917–10931. doi: 10.1523/JNEUROSCI.1005-17.2017
  75. Shen L., Nam H.S., Song P., Moore H., Anderson S.A. FoxG1 haploinsufficiency results in impaired neurogenesis in the postnatal hippocampus and contextual memory deficits. Hippocampus. 2006;16:875–890. doi: 10.1002/hipo.20218
  76. Hawk J.D., Abel T. The role of NR4A transcription factors in memory formation. Brain Res. Bull. 2011;85:21–29.
  77. Beck B., Pourié G. Ghrelin, neuropeptide Y, and other feeding-regulatory peptides active in the Hippocampus: Role in learning and memory. Nutr. Rev. 2013;71:541–561.
  78. Deakin I.H., Godlewska B.R., Walker M.A., Huang G.J., Schwab M.H., Nave K.A., Law A.J., Harrison P.J. Altered hippocampal gene expression and structure in transgenic mice overexpressing neuregulin 1 (Nrg1) type I. Transl. Psychiatry. 2018;8:229.
  79. Chen P.B., Kawaguchi R., Blum C., Achiro J.M., Coppola G., O’Dell T.J., Martin K.C. Mapping gene expression in excitatory neurons during hippocampal late-phase long-term potentiation. Front. Mol. Neurosci. 2017;10:39.
  80. Cembrowski M.S., Wang L., Sugino K., Shields B.C., Spruston N. Hipposeq: A comprehensive RNA-seq database of gene expression in hippocampal principal neurons. eLife. 2016;5:e14997. doi: 10.7554/eLife.14997
  81. Umryukhin A.E. Neurochemical hippocampal mechanisms of stress behavior and escape reactions. Journal of New Medical Technologies. 2013;1. Article No. 2-32 (in Russ.).
  82. Guo L., Niu M., Yang J., Li L., Liu S., Sun Y., Zhou Z., Zhou Y. GHS-R1a Deficiency Alleviates Depression-Related Behaviors After Chronic Social Defeat Stress. Front. Neurosci. 2019;13. doi: 10.3389/fnins.2019.00364
  83. Iniushkina E.M. Vestnik Samarskogo gosudarstvennogo universiteta. Estestvennonauchnaia seriia (Vestnik of Samara University. Natural Science Series). 2006;2:168–177 (in Russ.).
  84. Mazo G.E., Rukavishnikov G.V., Kibitov A.O., Kelin L.L., Bobrovsky A.V. Eating disorders in patients with depression: pathological mechanisms of comorbidity. Uspekhi fiziologicheskikh nauk (Progress in Physiological Science). 2019;50:31–41 (in Russ.). doi: 10.1134/S0301179819020073
  85. Morozov Y.M., Koch M., Rakic P., Horvath T.L. Cannabinoid type 1 receptor-containing axons innervate NPY/AgRP neurons in the mouse arcuate nucleus. Mol. Metab. 2017;6:374–381. doi: 10.1016/j.molmet.2017.01.004
  86. Costa R.A., Ferreira I.R., Cintra H.A., Gomes L.H.F., Guida L. da C. Genotype-Phenotype Relationships and Endocrine Findings in Prader-Willi Syndrome. Front. Endocrinol. (Lausanne). 2019;10. doi: 10.3389/fendo.2019.00864
  87. Shen Y., Tian M., Zheng Y., Gong F., Fu A.K.Y., Ip N.Y. Stimulation of the Hippocampal POMC/MC4R Circuit Alleviates Synaptic Plasticity Impairment in an Alzheimer’s Disease Model. Cell Rep. 2016;17:1819–1831. doi: 10.1016/j.celrep.2016.10.043
  88. Gmoshinski I.V., Apryatin S.A., Shipelin V.A., Nikitjuk D.B. Neuromediators and neuropeptides: the biomarkers for metabolic disturbances in obesity. Problems of Endocrinology. 2018;64:258–269 (in Russ.). doi: 10.14341/probl9466
  89. Mavani G.P., DeVita M. V., Michelis M.F. A review of the nonpressor and nonantidiuretic actions of the hormone vasopressin. Front. Med. 2015;2:19.
  90. Bordt E.A., Smith C.J., Demarest T.G., Bilbo S.D., Kingsbury M.A. Mitochondria, Oxytocin, and Vasopressin: Unfolding the Inflammatory Protein Response. Neurotox. Res. 2019;36:239–256.
Table of Contents Original Article
Math. Biol. Bioinf.
2020;15(2):357-393
doi: 10.17537/2020.15.357
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References
Supplementary data

 

  Copyright IMPB RAS © 2005-2022