Russian version English version
Volume 15   Issue 2   Year 2020
Glazkov A.A.1, Kulikov D.A.1,2, Glazkova P.A.1

Assessing Diagnostic Accuracy of Quantitative Data in Biomedical Studies Using Descriptive Statistics and Standardized Mean Difference

Mathematical Biology & Bioinformatics. 2020;15(2):416-428.

doi: 10.17537/2020.15.416.

References

  1. Boyko I.Y., Anisimov D.S., Smolyakova L.L., Ryazanov M.A. Approach to The Selection of Significant Features in Solving Biomedical Problems of Binary Classification of Microarray Data. Mathematical Biology and Bioinformatics. 2020;15(1):4–19 (in Russ.). doi: 10.17537/2020.15.4
  2. Alemayehu D., Zou K.H. Applications of ROC analysis in medical research: recent developments and future directions. Academic Radiology. 2012;19(12):1457–1464. doi: 10.1016/j.acra.2012.09.006
  3. Nakas C.T., Reiser B. Editorial for the special issue of “Statistical Methods in Medical Research” on “Advanced ROC analysis”. Statistical Methods in Medical Research. 2018;27(3):649–650. doi: 10.1177/0962280217742536
  4. Hosmer D.W., Lemeshow S., Sturdivant R.X. Applied Logistic Regression. John Wiley & Sons, 2013. P. 528. doi: 10.1002/9781118548387
  5. Fronek A., Allison M. Noninvasive evaluation of endothelial activity in healthy and diseased individuals. Vascular and Endovascular Surgery. 2014;48(2):134–138. doi: 10.1177/1538574413508229
  6. Ovadia-Blechman Z., Avrahami I., Weizman-Shammai E., Sharir T., Eldar M., Chouraqui P. Peripheral microcirculatory hemodynamic changes in patients with myocardial ischemia. Biomedicine & Pharmacotherapy. 2015;74:83–88. doi: 10.1016/j.biopha.2015.07.011
  7. Kulikov D.A., Glazkov A.A., Kovaleva Y.A., Balashova N.V., Kulikov A.V. Prospects of Laser Doppler flowmetry application in assessment of skin microcirculation in diabetes. Diabetes Mellitus. 2017;20(4):279–285. doi: 10.14341/DM8014
  8. Glass G.V. Integrating Findings: The Meta-Analysis of Research. Review of Research in Education. 1977;5(1):351–379. doi: 10.2307/1167179
  9. Cohen J. Quantitative methods in psychology: a power primer. Psychological Bulletin. 1992;112(1):155–159. doi: 10.1037/0033-2909.112.1.155
  10. Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters. 2006;27(8):861–874. doi: 10.1016/j.patrec.2005.10.010
  11. Perkins N.J., Schisterman E.F. The inconsistency of “optimal” cut-points using two ROC based criteria. American Journal of Epidemiology. 2006;163(7):670–675. doi: 10.1093/aje/kwj063
  12. Wan X., Wang W., Liu J., Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Medical Research Methodology. 2014;14(135):1–13. doi: 10.1186/1471-2288-14-135
  13. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria. 2013. http://www.R-project.org/. (accessed 09.12.2020).
  14. Lee D.K. Alternatives to P value: Confidence interval and effect size. Korean Journal of Anesthesiology. 2016;69(6):555–562. doi: 10.4097/kjae.2016.69.6.555
  15. Kulikov D., Glazkov A., Dreval A., Kovaleva Y., Rogatkin D., Kulikov A., Molochkov A. Approaches to improve the predictive value of laser Doppler flowmetry in detection of microcirculation disorders in diabetes mellitus. Clinical Hemorheology and Microcirculation. 2018;70(2):173–179. doi: 10.3233/CH-170294
  16. Glazkova P.A., Terpigorev S.A., Kulikov D.A., Ivanova N.A., Glazkov A.A. Increasing the diagnostic signifcance of the laser Doppler flowmetry in assessing skin microcirculation in hypertension. Arterial’naya Gipertenziya (Arterial Hypertension). 2019;25(1):74–83 (in Russ.). doi: 10.18705/1607-419X-2019-25-1-74-83
  17. Cupisti A., Rossi M., Placidi S., Fabbri A., Morelli E., Vagheggini G., Meola M., Barsotti G. Responses of the Skin Microcirculation to Acetylcholine in Patients with Essential Hypertension and in Normotensive Patients with Chronic Renal Failure. Nephron. 2000;85(2):114–119. doi: 10.1159/000045643
  18. Robin X., Turck N., Hainard A., Tiberti N., Lisacek F., Sanchez J.C., Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12(1):1–8. doi: 10.1186/1471-2105-12-77
  19. PubMed Database. https://pubmed.ncbi.nlm.nih.gov/ (accessed 09.12.2020).
  20. Sawilowsky S.S. New effect size rules of thumb. Journal of Modern Applied Statistical Methods. 2009;8(2):597–599. doi: 10.22237/jmasm/1257035100
  21. Fuchs D., Dupon P.P., Schaap L.A., Draijer R. The association between diabetes and dermal microvascular dysfunction non-invasively assessed by laser Doppler with local thermal hyperemia: a systematic review with meta-analysis. Cardiovascular Diabetology. 2017;16(11):1–12. doi: 10.1186/s12933-016-0487-1

 

Table of Contents Original Article
Math. Biol. Bioinf.
2020;15(2):416-428
doi: 10.17537/2020.15.416
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References
Supplementary data

 

  Copyright IMPB RAS © 2005-2022