Russian version English version
Volume 19   Issue 1   Year 2024
Zalizniak V.E., Zolotov O.A.

Mathematical Model of Closed Microecosystem “Algae – Heterotrophic Bacteria”

Mathematical Biology & Bioinformatics. 2024;19(1):96-111.

doi: 10.17537/2024.19.96.

References

  1. Saltykov M.Yu., Bartsev S.I., Lankin Y.P. Dependence of Closed Ecosystem Models Stability on the Number of Species. Journal of Siberian Federal University. Biology. 2011;4(2):197–208. doi: 10.17516/1997-1389-0181
  2. Saltykov M.Yu., Bartsev S.I., Lankin Yu.P. Stability of closed ecology life support systems (CELSS) models as dependent upon the properties of methabolism of the described species. Advances in Space Research. 2012;49:223–229. doi: 10.1016/j.asr.2011.10.002
  3. Bartsev S., Degermendzhi A. The evolutionary mechanism of formation of biosphere closure. Mathematics. 2023;11:3218. doi: 10.3390/math11143218
  4. Andrews J.F. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnology and Bioengineering. 1968;10:707–723. doi: 10.1002/bit.260100602
  5. Takano S., Pawlowska B.J., Gudelj I., Yomo T., Tsuru S. Density-dependent recycling promotes the long-term survival of bacterial populations during periods of starvation. mBio. 2017;8(1). Article No. e02336–16. doi: 10.1128/mBio.02336-16
  6. Zelenev V.V., van Bruggen A.H.C., Semenov A.M. “BACWAVE” a spatial–temporal model for traveling waves of bacterial populations in response to a moving carbon source in soil. Microbial Ecology. 2000;40:260–272. doi: 10.1007/s002480000029
  7. Hulatt C.J., Thomas D.N. Dissolved organic matter (DOM) in microalgal photobioreactors: A potential loss in solar energy conversion? Bioresource Technology. 2010;101(22):8690–8697. doi: 10.1016/j.biortech.2010.06.086
  8. Kovrov B.G., Fishtein G.N. Izvestiia SO AN SSSR. Ser. Biologicheskaia (Biology Bulletin of the Academy of Sciences of the USSR). 1980;1(5):35–40 (in Russ.).
  9. Fishtein G.N. Vidovaia struktura zamknutykh mikroekosistem (Species structure of closed microecosystems). Moscow, 1981 (in Russ).
  10. Josephine A., Kumar T.S., Surendran B., Rajakumar S., Kirubagaran R., Dharani G. Evaluating the effect of various environmental factors on the growth of the marine microalgae Chlorella vulgaris. Frontiers in Marine Science. 2022;9. Article No. 954622. doi: 10.3389/fmars.2022.954622
  11. Maier R.M. Bacterial Growth. In: Environmental Microbiology. Ed.: Maier R.M., Pepper I.L., Gerba C.P. Academic Press, 2009. P. 37–54. doi: 10.1016/B978-0-12-370519-8.00003-1
  12. Baird M.E., Middleton J.H. On relating physical limits to the carbon: nitrogen ratio of unicellular algae and benthic plants. Journal of Marine Systems. 2004;49:169–175. doi: 10.1016/j.jmarsys.2003.10.007
  13. Rosser H.R.Jr. Elemental composition of Pseudomonas putida under copper stress. Doctoral Dissertations. 1979. https://scholars.unh.edu/dissertation/1258/ (accessed 18.03.2024).
  14. Halder P., Azad A.K. Recent trends and challenges of algal biofuel conversion technologies. In: Advanced Biofuels: Applications, Technologies and Environmental Sustainability. Ed.: Azad A.K., Rasul M. Woodhead Publishing, 2019. P. 167–179. (Woodhead publishing series in energy). doi: 10.1016/B978-0-08-102791-2.00007-6
  15. Kuhfuß F., Gassenmeier V., Deppe S., Ifrim G., Rodríguez T. H., Frahm B. View on a mechanistic model of Chlorella vulgaris in incubated shake flasks. Bioprocess and Biosystems Engineering. 2022;45:15–30. doi: 10.1007/s00449-021-02627-2
  16. Lee E., Zhang Q. Integrated co-limitation kinetic model for microalgae growth in anaerobically digested municipal sludge centrate. Algal Research. 2016;18:15–24. doi: 10.1016/j.algal.2016.05.019
  17. Kim D.-J., Choi J.-W., Choi N.-C., Mahendran B., Lee C.-E. Modeling of growth kinetics for Pseudomonas spp. during benzene degradation. Appl. Microbiol. Biotechnol. 2005;69:456–462. doi: 10.1007/s00253-005-1997-z
  18. Annuar M.S.M., Tan I.K.P., Ibrahim S., Ramachandran K.B. Ammonium uptake and growth kinetics of Pseudomonas putida PGA1. Asia Pacific Journal of Molecular Biology and Biotechnology. 2006;14(1):1–10.
  19. Shoemaker W.R., Jones S.E., Muscarella M.E., Behringer M.G., Lehmkuhl B.K., Lennon J.T. Microbial population dynamics and evolution outcomes under extreme energy limitation. PNAS. 2021;118(33). Article No. e2101691118. doi: 10.1073/pnas.2101691118
  20. Seto M., Noda M. Growth rate, biomass production and carbon balance of Pseudomonas aeruginosa at pH extremes in a carbon-limited medium. Jap. J. Limnol. 1982;43(4):263–271. doi: 10.3739/rikusui.43.263
  21. Kim H.-W., Park S., Rittmann B.E. Multi-component kinetics for the growth of the cyanobacterium Synechocystis sp. PCC6803. Environ. Eng. Res. 2015;20(4):347–355. doi: 10.4491/eer.2015.033
  22. Ketheesan B., Nirmalakhandan N. Modeling microalgal growth in an airlift-driven raceway reactor. Bioresource Technology. 2013;136:689–696. doi: 10.1016/j.biortech.2013.02.028
  23. Norland S., Heldal M., Tumyr O. On the relation between dry matter and volume of bacteria. Microbial Ecology. 1987;13:95–101. doi: 10.1007/BF02011246
  24. Li M., Gao L., Lin L. Specific growth rate, colonial morphology and extracellular polysaccharides (EPS) content of Scenedesmus obliquus grown under different levels of light limitation. Ann. Limnol. - Int. J. Lim. 2015;51:329–334. doi: 10.1051/limn/2015033
Table of Contents Original Article
Math. Biol. Bioinf.
2024;19(1):96-111
doi: 10.17537/2024.19.96
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024