Лихошвай Виталий Александрович, Фадеев Станислав Иванович, Хлебодарова Тамара Михайловна
Стазис и периодичность в эволюции глобальной экосистемы: минимальная логистическая модель
Математическая биология и биоинформатика. 2017;12(1):120-136.
doi: 10.17537/2017.12.120.
Список литературы
- Butterfield N.J. Macroevolution and macroecology through deep time. Palaeontology. 2007;50(1):41-55. doi: 10.1111/j.1475-4983.2006.00613.x
- Raup D.M., Sepkoski J.J. Jr. Mass extinctions in the marine fossil record. Science. 1982;215(4539):1501-1503. doi: 10.1126/science.215.4539.1501
- MacLeod N. The causes of Phanerozoic extinctions. In: Evolution on Planet Earth. Eds. Rothschild L., Lister A. London: Academic Press; 2003. P. 253-277. doi: 10.1016/B978-012598655-7/50041-0
- Huey R.B., Ward P.D. Hypoxia, global warming, and terrestrial late Permian extinctions. Science. 2005;308(5720):398-401. doi: 10.1126/science.1108019
- Peters S.E. Environmental determinants of extinction selectivity in the fossil record. Nature. 2008;454(7204):626-629. doi: 10.1038/nature07032
- Wignall P.B., Sun Y., Bond D.P., Izon G., Newton R.J., Védrine S., Widdowson M., Ali J.R., Lai X., Jiang H., Cope H., Bottrell S.H. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science. 2009;324(5931):1179-1182. doi: 10.1126/science.1171956
- Courtillot V., Fluteau F. Cretaceous extinctions: the volcanic hypothesis. Science. 2010;328(5981):973-974. doi: 10.1126/science.328.5981.973-b
- Alvarez L.W., Alvarez W., Asaro F., Michel H.V. Extraterrestrial cause for the cretaceous-tertiary extinction. Science. 1980;208(4448):1095-1108. doi: 10.1126/science.208.4448.1095
- Alvarez L.W., Alvarez W., Asaro F., Michel H.V. Asteroid extinction hypothesis. Science. 1981;211(4483):654-656. doi: 10.1126/science.211.4483.654-a
- Schulte P., Alegret L., Arenillas I., Arz J.A., Barton P.J., Bown P.R., Bralower T.J., Christeson G.L., Claeys P., Cockell C.S. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science. 2010;327(5970):1214-1218. doi: 10.1126/science.1177265
- Archibald J.D., Clemens W.A., Padian K., Rowe T., Macleod N., Barrett P.M., Gale A., Holroyd P., Sues H.D., Arens N.C. et al. Cretaceous extinctions: multiple causes. Science. 2010;328(5981):973. doi: 10.1126/science.328.5981.973-a
- Raup D.M., Sepkoski J.J. Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. USA. 1984;81(3):801-805. doi: 10.1073/pnas.81.3.801
- Raup D.M., Sepkoski J.J. Jr. Periodic extinction of families and genera. Science. 1986;231:833-836. doi: 10.1126/science.11542060
- Sepkoski J.J. Jr. Extinctions of life. Los Alamos Sci. 1988;16:36-49.
- Sepkoski J.J. Jr. Periodicity in extinction and the problem of catastrophism in the history of life. J. Geol. Soc. London. 1989;146:7-19. doi: 10.1144/gsjgs.146.1.0007
- Rohde R.A., Muller R.A. Cycles in fossil diversity. Nature. 2005;434(7030):208-210. doi: 10.1038/nature03339
- Sznajd-Weron K., Weron R.L. A new model of mass extinctions. Physica A: Statistical Mechanics and its Applications. 2001;293(3-4):559-565. doi: 10.1016/S0378-4371(01)00019-X
- Guex J., Pilet S., Müntener O., Bartolini A., Spangenberg J., Schoene B., Sell B., Schaltegger U. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction. Sci. Rep. 2016;6. Article No. 23168. doi: 10.1038/srep23168
- Markov A.V. Dynamics of the marine faunal diversity in the phanerozoic: a new approach. Paleontol. J. 2001;35(1):1-9.
- Markov A.V. A new approach to modeling the diversity dynamics of phanerozoic marine biota. Zh. Obshch. Biol. 2001;62(6):460-471 (in Russ.).
- Markov A.V., Korotaev A.V. The dynamics of Phanerozoic marine animal diversity agrees with the hyperbolic growth model. Zh. Obshch. Biol. 2007;68(1):3-18 (in Russ.).
- Dieckmann U., Law R. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 1996;34(5-6):579-612. doi: 10.1007/BF02409751
- Marzoli A., Renne P.R., Piccirillo E.M., Ernesto M., Bellieni G., De Min A. Extensive 200-million-year-Old continental flood basalts of the central atlantic magmatic province. Science. 1999;284(5414):616-618. doi: 10.1126/science.284.5414.616
- Finnegan S., Bergmann K., Eiler J.M., Jones D.S., Fike D.A., Eisenman I., Hughes N.C., Tripati A.K., Fischer W.W. The magnitude and duration of Late Ordovician-Early Silurian glaciation. Science. 2011;331(6019):903-906. doi: 10.1126/science.1200803
- Finnegan S., Heim N.A., Peters S.E., Fischer W.W. Climate change and the selective signature of the Late Ordovician mass extinction. Proc. Natl. Acad. Sci. USA. 2012;109(18):6829-6834. doi: 10.1073/pnas.1117039109
- Keller G., Adatte T., Pardo A., Bajpai S., Khosla A., Samant B. Cretaceous extinctions: evidence overlooked. Science. 2010;328(5981):974-975. doi: 10.1126/science.328.5981.974-a
- Olsen P.E. Giant lava flows, mass extinctions, and mantle plumes. Science. 1999;284:604-605. doi: 10.1126/science.284.5414.604
- Hallam A., Wignall P.B. Mass extinctions and sea-level changes. Earth Sci. Rev. 1999;48:217-250. doi: 10.1016/S0012-8252(99)00055-0
- McElwain J.C., Beerling D.J., Woodward F.I. Fossil plants and global warming at the Triassic-Jurassic boundary. Science. 1999;285:1386-1390. doi: 10.1126/science.285.5432.1386
- Tanner L.H., Hubert J.F., Coffey B.P., McInerney D.P. Stability of atmospheric CO2 levels across the Triassic/Jurassic boundary. Nature. 2001;411(6838):675-677. doi: 10.1038/35079548
- Beerling D. CO2 and the end-Triassic mass extinction. Nature. 2002;415(6870):386-387. doi: 10.1038/415386a
- Petersen H.I., Lindström S. Synchronous wildfire activity rise and mire deforestation at the triassic-jurassic boundary. PLoS One. 2012;7(10). Article No. e47236. doi: 10.1371/journal.pone.0047236
- Bacon K.L., Belcher C.M., Haworth M., McElwain J.C. Increased atmospheric SO2 detected from changes in leaf physiognomy across the Triassic-Jurassic boundary interval of East Greenland. PLoS One. 2013;8(4). Article No. e60614. doi: 10.1371/journal.pone.0060614
- Knoll A.H., Bambach R.K., Canfield D.E., Grotzinger J.P. Comparative Earth history and Late Permian mass extinction. Science. 1996;273:452-457. doi: 10.1126/science.273.5274.452
- Shen Y., Farquhar J., Zhang H., Masterson A., Zhang T., Wing B.A. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction. Nat. Commun. 2011;2. Article No. 210. doi: 10.1038/ncomms1217
- Song H., Wignall P.B., Chu D., Tong J., Sun Y., Song H., He W., Tian L. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Sci. Rep. 2014;4. Article No. 4132. doi: 10.1038/srep04132
- Barnosky A.D., Matzke N., Tomiya S., Wogan G.O., Swartz B., Quental T.B., Marshall C., McGuire J.L., Lindsey E.L., Maguire K.C., Mersey B., Ferrer E.A. Has the Earth's sixth mass extinction already arrived? Nature. 2011;471(7336):51-57. doi: 10.1038/nature09678
- Ceballos G., Ehrlich P.R., Barnosky A.D., García A., Pringle R.M., Palmer T.M. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015;1(5). Article No. e1400253. doi: 10.1126/sciadv.1400253
|
|
|