Список литературы
- Kartashev V., Batashova I., Kartashov S., Ermakov A., Mironova A., Kuleshova Y., Ilyasov B., Kolodiy I., Klyuchnikov A., Ryabikina E., Babicheva M., Levchenko Y., Pavlova R., Pantchev N., Morchón R., Simón F. Canine and human dirofilariosis in the Rostov Region (Southern Russia). Veterinary Medicine International. 2011;2011. Article ID 685713.
- Kartashev V., Tverdokhlebova T., Korzan A., Vedenkov A., Simón L., González-Miguel J., Morchón R., Siles-Lucas M., Simón F. Human subcutaneous/ocular dirofilariasis in the Russian Federation and Belarus, 1997-2013. International Journal of Infectious Diseases. 2015;33:209-211. doi: 10.1016/j.ijid.2015.02.017
- Diekmann O., Heesterbeek H., Britton T. Mathematical tools for understanding infectious disease dynamics. Princeton University Press, 2012. 502 p.
- Gutierrez J.B., Galinski M.R., Cantrell S., Voit E.O. From within host dynamics to the epidemiology of infectious disease: Scientific overview and challenges. Mathematical Biosciences. 2015;270:143-155. doi: 10.1016/j.mbs.2015.10.002
- Robertson S.L., Caillouët K.A. A host stage-structured model of enzootic West Nile virus transmission to explore the effect of avian stage-dependent exposure to vectors. Journal of Theoretical Biology. 2016;399:33-42. doi: 10.1016/j.jtbi.2016.03.031
- Gulbudak H., Cannataro V.L., Tuncer N., Martcheva M. Vector-Borne Pathogen and Host Evolution in a Structured Immuno-Epidemiological System. Bulletin of Mathematical Biology. 2017;79(2):325-355. doi: 10.1007/s11538-016-0239-0
- Sergiev V.P., Orlov V.S., Boev B.V., Grinchenko S.N., Sabgaida T.P. Mathematical modelling of Plasmodium falciparum malaria. Parazitologiya. 1995;29(3):159-166 (in Russ.).
- Lewis M., Renclawowicz J., van den Driessche P. Traveling Waves and Spread Rates for a West Nile Virus Model. Bulletin of Mathematical Biology. 2006;68:3-23. doi: 10.1007/s11538-005-9018-z
- Chitnis N., Cushing J.M., Hyman J.M. Bifurcation analysis of a mathematical model for malaria transmission. SIAM Journal on Applied Mathematics. 2006;67(1):24-45. doi: 10.1137/050638941
- Burli C., Harbrecht H., Odermatt P., Sayasone S., Chitnis N. Mathematical analysis of the transmission dynamics of the liver fluke, Opisthorchis viverrini. Journal of Theoretical Biology. 2018;439:181-194. doi: 10.1016/j.jtbi.2017.11.020
- Ngwa G.A., Shu W.S. A mathematical model for endemic malaria with variable human and mosquito populations. Mathematical and Computer Modelling. 2000;32(7-8):747-763. doi: 10.1016/S0895-7177(00)00169-2
- Okuneye K., Gumel A.B. Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics. Mathematical Biosciences. 2017;287:72-92. doi: 10.1016/j.mbs.2016.03.013
- Wonham M.J., De-Camino-Beck T., Lewis M.A. An epidemiological model for West Nile virus: Invasion analysis and control applications. Proceedings of the Royal Society B: Biological Sciences. 2004;271(1538):501-507. doi: 10.1098/rspb.2003.2608
- Shyu Y.-C., Chien R.-N., Wang F.-B. Global dynamics of a West Nile virus model in a spatially variable habitat. Nonlinear Analysis: Real World Applications. 2018;41:313-333. doi: 10.1016/j.nonrwa.2017.10.017
- Mohammed-Awel J., Zhao R., Numfor E., Lenhart S. Management strategies in a malaria model combining human and transmission-blocking vaccines. Discrete and Continuous Dynamical Systems - Series B. 2017;22(3):977-1000. doi: 10.3934/dcdsb.2017049
- Akbaev Sh.M. Parazitologiia i invazionnye bolezni zhivotnykh (Parasitology and invasive animal diseases). Moscow, 2009. 776 p.
|
|
|