Русская версия English version   
Том 13   Выпуск 2   Год 2018
Коршунова А.Н., Лахно В.Д.

Особенности движения заряда в однородных молекулярных полинуклеотидных цепочках конечной длины. Быстрое формирование движущегося поляронного состояния

Математическая биология и биоинформатика. 2018;13(2):534-550.

doi: 10.17537/2018.13.534.

Список литературы

 

  1. Lakhno V.D. DNA nanobioelectronics. Int. Quantum. Chem. 2008;108:1970-1981. doi: 10.1002/qua.21717
  2. Nanobioelectronics - for Electronics, Biology and Medicine. Eds. Offenhausser A.R. Rinaldi. New York: Springer, 2009.
  3. Eudres R.G., Cox D.L., Singh R.R.P. Colloquium: The quest for high-conductance DNA. Rev. Mod. Phys. 2004;76:195-214. doi: 10.1103/RevModPhys.76.195
  4. Taniguchi M., Kawai T. DNA electronics. Physica E. 2006;33:1-12. doi: 10.1016/j.physe.2006.01.005
  5. Porath D., Cuniberti G., Di Felice R. Charge transport in DNA-based devices. Top. Curr. Chem. 2004;237:183-227. doi: 10.1007/b94477
  6. Shinwari M.W., Deen M.J., Starikov E.B., Cuniberti G. Electrical Conductance in Biological Molecules. Advanced Functional Materials. 2010;20(12):1865-1883. doi: 10.1002/adfm.200902066
  7. Shigaev A.S., Ponomarev O.A., Lakhno V.D. Theoretical and Experimental Investigations of DNA Open States. Math. Biol. Bioinf.. 2013;8(2):553-664. doi: 10.17537/2013.8.553
  8. Peyrard M., Cuesta-Lopez S., James G. Modelling DNA at the mesoscale: a challenge for nonlinear science? Nonlinearity. 2008;21:91-100. doi: 10.1088/0951-7715/21/6/T02
  9. Zamora-Sillero E., Shapovalov A.V., Esteban F.J. Formation, control and dynamics of N localized structures in the Peyrard-Bishop model. Phys. Rev. E. 2007;76:066603. doi: 10.1103/PhysRevE.76.066603
  10. Starikov E.B. Electron-phonon coupling in DNA: a systematic study. Philosophical Magazine. 2005;85:3435-3462. doi: 10.1080/14786430500157110
  11. Maniadis P., Kalosakas G., Rasmussen K.O., Bishop A.R. ac conductivity in a DNA charge transport model. Phys. Rev. E. 2005;72:021912. doi: 10.1103/PhysRevE.72.021912
  12. Komineas S., Kalosakas G., Bishop A.R. Effects of intrinsic base-pair fluctuations on charge transport in DNA. Phys. Rev. E. 2002. V. 65. P. 061905. doi: 10.1103/PhysRevE.65.061905
  13. Shigaev A.S., Ponomarev O.A., Lakhno V.D. A new approach to microscopic modeling of a hole transfer in heteropolymer DNA. Chemical Physics Letters. 2011;513:276-279. doi: 10.1016/j.cplett.2011.07.080
  14. Hennig D., Starikov E.B., Archilla J.F.R., Palmero F. Charge Transport in Poly(dG)–Poly(dC) and Poly(dA)–Poly(dT) DNA Polymers. Journal of Biological Physics. 2004;30(3. P. 227. doi: 10.1023/B:JOBP.0000046721.92623.a9
  15. Starikov E.B., Lewis J.P., Sankey O.F. Base sequence effects on charge carrier generation in DNA: a theoretical study. International Journal of Modern Physics B. 2005;19(29):4331-4357. doi: 10.1142/S0217979205032802
  16. Korshunova A.N., Lakhno V.D. A new type of localized fast moving electronic excitations in molecular chains. Physica E. 2014;60:206. doi: 10.1016/j.physe.2014.02.025
  17. Lakhno V.D., Korshunova A.N. Electron motion in a Holstein molecular chain in an electric field. Eur. Phys. J. B. 2011;79:147. doi: 10.1140/epjb/e2010-10565-2
  18. Berashevich J.A., Bookatz A.D., Chakraborty T. The electric field effect and conduction in the Peyrard-Bishop-Holstein model. J. Phys.: Condens. Matter. 2008;20:035207. doi: 10.1088/0953-8984/20/03/035207
  19. Diaz E., Lima R.P.A. Dominguez-Adame F. Bloch-like oscillations in the Peyrard-Bishop-Holstein model. Phys. Rev. B. 2008;78:134303. doi: 10.1103/PhysRevB.78.134303
  20. Rakhmanova S.V., Conwell E.M. Polaron Motion in DNA. J. Phys. Chem. B. 2001;105:2056. doi: 10.1021/jp0036285
  21. Lakhno V.D., Chetverikov A.P. Excitation of Bubbles and Breathers in DNA and Their Interaction with the Charge Carriers. Math. Biol. Bioinf. 2014;9(1):4-19. doi: 10.17537/2014.9.4
  22. Chetverikov A.P., Ebeling W., Lakhno V.D., Shigaev A.S., Velarde M.G. On the possibility that local mechanical forcing permits directionally-controlled long-range electron transfer along DNA-like molecular wires with no need of an external electric field - Mechanical control of electrons. Eur. Phys. J. B. 2016;89:101. doi: 10.1140/epjb/e2016-60949-1
  23. Lakhno V.D. Soliton-like Solutions and Electron Transfer in DNA. J. Biol. Phys. 2000;26:133. doi: 10.1023/A:1005275211233
  24. Conwell E.M., Rakhmanova S.V. Polarons in DNA. Proc. Natl. Acad. Sci. 2000;97:4556. doi: 10.1073/pnas.050074497
  25. Fialko N.S., Lakhno V.D. Nonlinear dynamics of excitations in DNA. Phys. Lett. A. 2000;278:108. doi: 10.1016/S0375-9601(00)00755-6
  26. Lakhno V.D., Korshunova A.N. Formation of stationary electronic states in finite homogeneous molecular chains. Math. Biol. Bioinf. 2010;5:1-29. doi: 10.17537/2010.5.1
  27. Korshunova A.N., Lakhno V.D. The Peculiarities of Polaron Motion in the Molecular Polynucleotide Chains of Finite Length. Math. Biol. Bioinf. 2016;11(2):141-158. doi: 10.17537/2016.11.141
  28. Korshunova A.N., Lakhno V.D. The Peculiarities of Polaron Motion in the Molecular Polynucleotide Chains of Finite Length In The Presence Of Localized Excitations in the Chain. Math. Biol. Bioinf. 2017;12(1):204-223. doi: 10.17537/2017.12.204
  29. Dauxois T., Peyrard M., Bishop A.R. Dynamics and thermodynamics of a nonlinear model for DNA denaturation. Phys. Rev. E. 1993;47:684. doi: 10.1103/PhysRevE.47.684
  30. Peyrard M., Bishop A.R. Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 1989;62:2755-2758. doi: 10.1103/PhysRevLett.62.2755
  31. Peyrard M. Using DNA to probe nonlinear localized excitations? Europhys. Lett. 1998;44:271-277. doi: 10.1209/epl/i1998-00469-9
  32. Choi C.H., Kalosakas G., Rasmussen K.O., Hiromura M., Bishop A.R., Usheva A. DNA dynamically directs its own transcription initiation. Nucleic Acids Res. 2004;32(4):1584-1590. doi: 10.1093/nar/gkh335
  33. Holstein T. Studies of polaron motion: Part I. The molecular-crystal model. Annals of Phys. 1959;8:325-342. doi: 10.1016/0003-4916(59)90002-8
  34. Holstein T. Studies of polaron motion: Part II. The “small” polaron. Annals of Phys. 1959;8:343-389. doi: 10.1016/0003-4916(59)90003-X
Содержание Оригинальная статья
Мат. биол. и биоинф.
2018;13(2):534-550
doi: 10.17537/2018.13.534
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы

 

  Copyright ИМПБ РАН © 2005-2024