Русская версия English version   
Том 13   Выпуск 2   Год 2018
Мысин Иван Евгеньевич, Попова Ирина Юрьевна, Осипов Алексадр Александрович

Математическая модель нарушения энергетического метаболизма в мозге при развитии нейродегенеративных заболеваний: новый предполагаемый механизм гибели клеток

Математическая биология и биоинформатика. 2018;13(2):591-608.

doi: 10.17537/2018.13.591.

Список литературы

 

  1. Kudin A.P., Zsurka G., Elger C.E., Kunz W.S. Mitochondrial involvement in temporal lobe epilepsy. Exp. Neurol. 2009;218(2):326-332. doi: 10.1016/j.expneurol.2009.02.014
  2. Jeon S.Y., Yi D., Byun M.S., Choi H.J., Kim H.J., Lee J.H., Baek H., Choe Y.M., Lee Y., Woo J.I., Lee D.Y. Differential patterns of regional cerebral hypometabolism according to the level of cerebral amyloid deposition in patients with amnestic mild cognitive impairment. Neurosci. Lett. 2016;632:104-108. doi: 10.1016/j.neulet.2016.08.045
  3. Pan J.W. Williamson A., Cavus I., Hetherington H.P., Zaveri H., Petroff O.A., Spencer D.D. Neurometabolism in human epilepsy. Epilepsia. 2008;49(3):31-41. doi: 10.1111/j.1528-1167.2008.01508.x
  4. Zilberter Y., Zilberter M. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction. J. Neurosci. Res. 2017;95(11):2217-2235. doi: 10.1002/jnr.24064
  5. Onodera H., Iijima K., Kogure K. Mononucleotide metabolism in the rat brain after transient ischemia. J. Neurochem. 1986;46(6):1704-1710.
  6. Erecińska M., Silver I.A. Ions and energy in mammalian brain. Prog. Neurobiol. 1994;43(1):37-71.
  7. Gerkau N.J., Rakers C., Petzold G.C., Rose C.R. Differential effects of energy deprivation on intracellular sodium homeostasis in neurons and astrocytes. J. Neurosci. Res. 2017;95(11):2275-2285. doi: 10.1002/jnr.23995
  8. Tovar-y-Romo L.B., Penagos-Puig A., Ramírez-Jarquín J.O. Endogenous recovery after brain damage: molecular mechanisms that balance neuronal life/death fate. J. Neurochem. 2016;136(1):13-27. doi: 10.1111/jnc.13362
  9. Connolly N.M.C., D'Orsi B., Monsefi N., Huber H.J., Prehn J.H. Computational analysis of AMPK-mediated neuroprotection suggests acute excitotoxic bioenergetics and glucose dynamics are regulated by a minimal set of critical reactions. PLoS ONE. 2016;11(2). Article No. e0148326. doi: 10.1371/journal.pone.0148326
  10. Connolly N.M.C., Prehn J.H.M. The metabolic response to excitotoxicity - lessons from single-cell imaging. J. Bioenerg. Biomembr. 2015;47(1-2):75-88. doi: 10.1007/s10863-014-9578-4
  11. Jolivet R., Coggan J.S., Allaman I., Magistretti P.J. Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble. PLoS Comput. Biol. 2015;11(2). Article No. e1004036. doi: 10.1371/journal.pcbi.1004036
  12. Aubert A., Costalat R. Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism. J. Cereb. Blood Flow Metab. 2005;25(11):1476-1490. doi: 10.1038/sj.jcbfm.9600144
  13. Chander B.S., Chakravarthy V.S. A computational model of neuro-glio-vascular loop interactions. PLoS ONE. 2012;7(11). Article No. e48802. doi: 10.1371/journal.pone.0048802
  14. Heinrich R., Schuster S. The regulation of cellular systems. Boston, MA: Springer US; 1996. 291 p. doi: 10.1007/978-1-4613-1161-4
  15. Aubert A., Costalat R., Valabrègue R. Modelling of the coupling between brain electrical activity and metabolism. Acta Biotheor. 2001;49(4):301-326.
  16. Aubert A., Costalat R. A model of the coupling between brain electrical activity, metabolism, and hemodynamics: application to the interpretation of functional neuroimaging. Neuroimage. 2002;17(3):1162-1181.
  17. Petzold L. Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM J. Sci. and Stat. Comput. 1983;4(1):136-148.
  18. Hindmarsh A.C. ODEPACK, A Systematized Collection of ODE Solvers. IMACS Transactions on Scientific Computation. 1983;1:55-64.
  19. Connolly N.M.C., Düssmann H., Anilkumar U., Huber H.J., Prehn J.H. Single-cell imaging of bioenergetic responses to neuronal excitotoxicity and oxygen and glucose deprivation. J. Neurosci. 2014;34(31):10192-10205. doi: 10.1523/JNEUROSCI.3127-13.2014
  20. Kasischke K.A., Vishwasrao H.D., Fisher P.J., Zipfel W.R., Webb W.W. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science. 2004;305(5680):99-103. doi: 10.1126/science.1096485
  21. Samokhina E., Popova I., Malkov A., Ivanov A.I., Papadia D., Osypov A., Molchanov M., Paskevich S., Fisahn A., Zilberter M., Zilberter Y. Chronic inhibition of brain glycolysis initiates epileptogenesis. J. Neurosci. Res. 2017;95(11):2195-2206. doi: 10.1002/jnr.24019
  22. Bidder T.G. Hexose translocation across the blood-brain interface: configurational aspects. J. Neurochem. 1968;15(8):867-874.
  23. Bachelard H.S., Clark A.G., Thompson M.F. Cerebral-cortex hexokinase. Elucidation of reaction mechanisms by substrate and dead-end inhibitor kinetic analysis. Biochem. J. 1971;123(5):707-715.
  24. Oldendorf W.H. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am. J. Physiol. 1971;221(6):1629-1639.
  25. Crane R.K., Sols A. The non-competitive inhibition of brain hexokinase by glucose-6-phosphate and related compounds. J. Biol. Chem. 1954;210(2):597-606.
  26. Wick A.N., Drury D.R., Morita T.N. 2-Deoxyglucose; a metabolic block for glucose. Proc. Soc. Exp. Biol. Med. 1955;89(4):579-582.
  27. Brown J. Effects of 2-deoxyglucose on carbohydrate metablism: review of the literature and studies in the rat. Metab. Clin. Exp. 1962;11:1098-1112.
  28. Stafstrom C.E., Roopra A., Sutula T.P. Seizure suppression via glycolysis inhibition with 2-deoxy-D-glucose (2DG). Epilepsia. 2008;49(8):97-100. doi: 10.1111/j.1528-1167.2008.01848.x
  29. Samokhina E., Malkov A., Samokhin A., Popova I. Selective hippocampal cell damage and mossy fiber sprouting induced by chronic impairment of cerebral glucose metabolism. (in press).
  30. Malkov A., Ivanov A.I., Buldakova S., Waseem T., Popova I., Zilberter M., Zilberter Y. Seizure-induced reduction in glucose utilization promotes brain hypometabolism during epileptogenesis. Neurobiol. Dis. 2018;116:28-38. doi: 10.1016/j.nbd.2018.04.016
  31. Öz G., DiNuzzo M., Kumar A., Moheet A., Seaquist E.R. Revisiting glycogen content in the human brain. Neurochem. Res. 2015;40(12):2473-2481. doi: 10.1007/s11064-015-1664-4
  32. Langer J., Gerkau N.J., Derouiche A., Kleinhans C., Moshrefi-Ravasdjani B., Fredrich M., Kafitz K.W., Seifert G., Steinhäuser C., Rose C.R. Rapid sodium signaling couples glutamate uptake to breakdown of ATP in perivascular astrocyte endfeet. Glia. 2017;65(2):293-308. doi: 10.1002/glia.23092
  33. Shinotsuka T., Yasui M., Nuriya M. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia. Biochem. Biophys. Res. Commun. 2014;444(2):171-176. doi: 10.1016/j.bbrc.2014.01.035
  34. Fan J., Dawson T.M., Dawson V.L. Cell death mechanisms of neurodegeneration. Adv. Neurobiol. 2017;15:403-425. doi: 10.1007/978-3-319-57193-5_16
Содержание Оригинальная статья
Мат. биол. и биоинф.
2018;13(2):591-608
doi: 10.17537/2018.13.591
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы

 

  Copyright ИМПБ РАН © 2005-2024