Русская версия English version   
Том 14   Выпуск 1   Год 2019
Лелеков Александр Сергеевич, Боровков Андрей Борисович, Новикова Татьяна Михайловна, Гудвилович Ирина Николаевна, Авсиян Анна Львовна, Меметшаева Ольга Александровна

Моделирование динамики содержания пигментов в клетках одноклеточной водоросли Dunaliella salina Teod. на стадии каротиногенеза

Математическая биология и биоинформатика. 2019;14(1):279-289.

doi: 10.17537/2019.14.279.

Список литературы

 

  1. Sánchez-Saavedra M.P., Castro-Ochoa F.Y., Nava-Ruiz V.M., Ruiz-Güereca D.A., Villagómez-Aranda A.L., Siqueiros-Vargas F., Molina-Cárdenas C.A. Effects of nitrogen source and irradiance on Porphyridium cruentum. J. Appl. Phycol. 2018;30(2):783–792. doi: 10.1007/s10811-017-1284-2
  2. Silva C.E., Sforza E., Bertucco A. Stability of carbohydrate production in continuous microalgal cultivation under nitrogen limitation: effect of irradiation regime and intensity on Tetradesmus obliquus. J. Appl. Phycol. 2018;30(1):261–270. doi: 10.1007/s10811-017-1252-x
  3. Lamers P.P., Janssen M., De Vos R.C., Bino R.J., Wijffels R.H. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J. Biotechnol. 2012;162(1):21–27. doi: 10.1016/j.jbiotec.2012.04.018
  4. Lv H., Cui X., Wahid F., Xia F., Zhong C. Jia S. Analysis of the physiological and molecular responses of Dunaliella salina to macronutrient deprivation. PLoS ONE. 2016;11(3). Article No. e0152226. doi: 10.1371/journal.pone.0152226
  5. Minhas A. K., Hodgson P., Barrow C. J., Adholeya A. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers in Microbiology. 2016;7:546. doi: 10.3389/fmicb.2016.00546
  6. Ben-Amotz A., Shaish A., Avron M. Mode of action of the massively accumulated β-carotene of Dunaliella bardawil in proteting the algae aqainst damaqe by excess irradiation. Plant. Physiol. 1989;91(3):1040–1043.
  7. Cloern J. E., Grenz C., Vidergar-Lucas L. An empirical model of the phytoplankton chlorophyll:carbon ratio – the conversation between productivity and growth. Limnol. Oceanogr. 1995;40(7):1310–1321. doi: 10.4319/lo.1995.40.7.1313
  8. Finenko Z.Z., Hoepffner N., Williams R., Piontkovski, S.A. Phytoplankton carbon to chlorophyll a rario: response to light, temperature and nutrient limitation. Marine Ekological Journal. 2003;2(2):40–64 (in Russ.).
  9. Geider R.J. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytol. 1987;106(1):1–34. doi: 10.1111/j.1469-8137.1987.tb04788.x
  10. Trenkenshu R.P. Kinetika substratzavisimykh reaktsii pri razlichnoi organizatsii metabolicheskikh sistem (Kinetics of substrate dependent reactions in various organization of metabolic systems). Sevastopol; 2005. 89 p. (in Russ.).
  11. Borovkov A.B. Mathematical model light depended pigments contents in microalgae cells for stationary dynamic balance chemostat cultures. Ekologiya Moray. 2010;80:17–24 (in Russ.).
  12. Nelson J.R. Rates and possible mechanism of light-dependent degradation of pigments in detritus derived from phytoplankton. J. Mar. Res. 1993;51(1):155–179.
  13. Rubin A.B. In: Biofizika (Biophysics). Vol. 2. Moscow; 1999 (in Russ.).
  14. Trenkenshu R.P., Lelekov A.S. Modelirovanie rosta mikrovodoroslei v kul'ture (Modeling microalgae growth in culture). Sevastopol'; 2017. 152 p. (in Russ.).
  15. Shaish A., Avron M., Ben-Amotz A. Effect of ingibitors on the formation of stereoisomers in the biosynthesis of β-carotene in Dunaliella bardawil. Plant. Cell. Physiol. 1990;31(5):689–696.
  16. Sirenko L.A., Sakevich A.I., Osipov L.F. et al. Metody fiziologo-biokhimicheskogo issledovaniia vodoroslei v gidrobiologicheskoi praktike (Methods of physiological and biochemical research of algae in hydrobiological practice). Kiev; 1975. 247 p. (in Russ.).
  17. Wellburn A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Phys. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2
  18. Solovchenko A.E. Physiology and adaptive significance of secondary carotenogenesis in green microalgae. Russian Journal of Plant Physiology. 2013;60(1):1-13. doi: 10.1134/S1021443713010081
  19. Solovchenko A.E., Selivanova E.A., Chekanov K.A., Sidorov R.A., Nemtseva N.V., Lobakova E.S. Induction of secondary carotenogenesis in new halophile microalgae from the genus Dunaliella (Chlorophyceae). Biochemistry (Moscow). 2015;80(11):1508–1513. doi: 10.1134/S0006297915110139
  20. Trenkenshu R.P., Lelekov A.S. Modeling of Dynamics of Nitrogenous Compounds in Microalgae Cells. 1. Batch Culture. Mathematical Biology and Bioinformatics. 2018;13(2):348–359 (in Russ.). doi: 10.17537/2018.13.348
Содержание Оригинальная статья
Мат. биол. и биоинф.
2019;14(1):279-289
doi: 10.17537/2019.14.279
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы

 

  Copyright ИМПБ РАН © 2005-2024