Русская версия English version   
Том 14   Выпуск 2   Год 2019
Андрианов А.М.1, Николаев Г.И. 2, Корноушенко Ю.В.1, Хуанг Дж.3, Дзян Ш.3, Тузиков А.В.2

In silico идентификация высокоаффинных лигандов белка gp120 ВИЧ-1 – потенциальных пептидомиметиков нейтрализующего антитела N6

Математическая биология и биоинформатика. 2019;14(2):430-449.

doi: 10.17537/2019.14.430.

Список литературы

 

  1. Arts E.J., Hazuda D.J. HIV-1 antiretroviral drug therapy. Cold Spring Harb. Perspect. Med. 2012;2:a007161. doi: 10.1101/cshperspect.a007161
  2. Kumari G., Singh R.K. Highly active antiretroviral therapy for treatment of HIV/AIDS patients: current status and future prospects and the Indian scenario. HIV AIDS Rev. 2012;11:5–14. doi: 10.1016/j.hivar.2012.02.003
  3. Wang H.-B., Mo Q.-H., Yang Z. HIV vaccine research: The challenge and the way forward. J. Immunol. Res. 2015;13:1–5.
  4. Barouch D.H. Challenges in the development of an HIV-1 vaccine. Nature. 2008;455:613–619. doi: 10.1038/nature07352
  5. Walker L.M., Burton D.R. Rational antibody-based HIV-1 vaccine design: Current approaches and future directions. Curr. Opin. Immunol. 2010;22:358–366.
  6. Corti D., Lanzavecchia A. Broadly neutralizing antiviral antibodies. Annu. Rev. Immunol. 2013;31:705–742.
  7. Mascola J.R., Haynes B.F. HIV-1 neutralizing antibodies: understanding nature’s pathways. Immunol. Rev. 2013;254:225–244.
  8. Haynes B.F., McElrath M.J. Progress in HIV-1 vaccine development. Curr. Opin. HIV AIDS. 2013;8:326–332.
  9. Kwong P.D., Mascola J.R., Nabel G.J. Rational design of vaccines to elicit broadly neutralizing antibodies to HIV-1. Cold Spring Harb. Perspect. Med. 2011;1:a007278. doi: 10.1101/cshperspect.a007278
  10. Van Gils M.J., Sanders RW Broadly neutralizing antibodies against HIV-1: Templates for a vaccine. Virol. J. 2013;435:46–56. doi: 10.1016/j.virol.2012.10.004
  11. Mann J.K., Ndung’u T. HIV-1 vaccine immunogen design strategies. Virol. J. 2015;12:3.
  12. Huang J., Kang B.H., Ishida E., Zhou T., Griesman T., Sheng Z., Wu F., Doria-Rose N.A., Zhang B., McKee K. et al. Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth. Immunity. 2016;45:1108–1121. doi: 10.1016/j.immuni.2016.10.027
  13. Kwong P.D., Mascola J.R., Nabel G.J. The changing face of HIV vaccine research. J. Int. AIDS Soc. 2012;15:17407.
  14. Huang J., Kang B.H., Pancera M., Lee J.H., Tong T., Feng Y., Imamichi H., Georgiev I.S., Chuang G.Y., Druz A. et al. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface. Nature. 2014;515:138–142. doi: 10.1038/nature13601
  15. Blattner C., Lee J.H., Sliepen K., Derking R., Falkowska E., de la Peña A.T., Cupo A., Julien J.P., van Gils M., Lee P.S. et al. Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers. Immunity. 2014;40:669–680. doi: 10.1016/j.immuni.2014.04.008
  16. Falkowska E., Le K.M., Ramos A., Doores K.J., Lee J.H., Blattner C., Ramirez A., Derking R., van Gils M.J., Liang C.H. et al. Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. Immunity. 2014;40:657–668. doi: 10.1016/j.immuni.2014.04.009
  17. Scharf L., Scheid J.F., Lee J.H., West A.P. Jr, Chen C., Gao H., Gnanapragasam P.N.P., Mares R., Seaman M.S., Ward A.B. et al. Antibody 8ANC195 reveals a site of broad vulnerability on the HIV-1 envelope spike. Cell Rep. 2014;7:785–795. doi: 10.1016/j.celrep.2014.04.001
  18. Lee J.H., Leaman D.P., Kim A.S., Torrents de la Pena A., Sliepen K., Yasmeen A., Derking R., Ramos A., de Taeye S.W., Ozorowski G. et al. Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike. Nature Commun. 2015;6:8167. doi: 10.1038/ncomms9167
  19. Kong R., Xu K., Zhou T., Acharya P., Lemmin T., Liu K., Ozorowski G., Soto C., Taft J.D., Bailer R.T. et al. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science. 2016;352:828–833. doi: 10.1126/science.aae0474
  20. Wibmer C.K., Gorman J., Ozorowski G., Bhiman J.N., Sheward D.J., Elliott D.H., Rouelle J., Smira A., Joyce M.G., Ndabambi N. et al. Structure and recognition of a novel HIV-1 gp120-gp41 interface antibody that caused MPER exposure through viral escape. PLoS Pathog. 2017;13(1):e1006074. doi: 10.1371/journal.ppat.1006074
  21. Li W., Lu L., Li W., Jiang S. Small-molecule HIV-1 entry inhibitors targeting gp120 and gp41: a patent review (2010-2015). Expert Opin. Ther. Pat. 2017;27:707–719.
  22. Su S., Wang Q., Xu W., Yu F., Hua C., Zhu Y., Jiang S., Lu L. A novel HIV-1 gp41 tripartite model for rational design of HIV-1 fusion inhibitors with improved antiviral activity. AIDS (London, England). 2017;31:885–894. doi: 10.1097/QAD.0000000000001415
  23. MacArthur R.D., Novak R.M. Maraviroc: The first of a new class of antiretroviral agents. Clin. Infect. Dis. 2008;47:236–241.
  24. Matthews T., Salgo M., Greenberg M., Chung J., DeMasi R., Bolognesi D. Enfuvirtide: The first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes. Nat. Rev. Drug Discov. 2004;3:215–225. doi: 10.1038/nrd1331
  25. Kashyn I.A., Tuzikov A.V., Andrianov A.M. Virtual Screening of Novel Hiv-1 Entry Inhibitors Blocking Cd4-Binding Site of the Virus Envelope Gp120 Protein. Mathematical Biology and Bioinformatics. 2014;9(2):359–372. doi: 10.17537/2014.9.359
  26. Kashyn I.A., Tuzikov A.V., Andrianov A.M. Identification of Novel Potential Inhibitors of the HIV-1 gp41 Protein by Virtual Screening and Molecular Modeling Methods. Mathematical Biology and Bioinformatics. 2015;10(2):325–343. doi: 10.17537/2015.10.325
  27. Sunseri J., Koes D.R. Pharmit: interactive exploration of chemical space. Nucl. Acids Res. 2016;44. P. W442–W448. doi: 10.1093/nar/gkw287
  28. Handoko S.D., Ouyang X., Su C.T.T., Kwoh C.K., Ong Y.S. QuickVina: Accelerating AutoDock Vina using gradient-based heuristics for global optimization. IEEE/ACM Trans. Comput. Biol. Bioinform. 2012;9:1266–1272. doi: 10.1109/TCBB.2012.82
  29. Curreli F., Kwon Y.D., Zhanga H., Scacalossia D., Belov D.S., Tikhonov A.A., Andreev I.A., Altieric A., Kurkin A.V., Kwong P.D., Debnath A.K. Structure-based design of a small molecule CD4-antagonist with broad spectrum anti-HIV-1 activity. J. Med. Chem. 2015;58:6909–6927.
  30. Lalonde J.M., Le-Khac M., Jones D.M., Courter J.R., Park J., Schön A., Princiotto A.M., Wu X., Mascola J.R., Freire E., Sodroski J., Madani N., Hendrickson W.A., Smith A.B. III. Structure-based design and synthesis of an HIV-1 entry inhibitor exploiting X-ray and thermodynamic characterization. ACS Med. Chem. Lett. 2013;4:338–343.
  31. Courter J.R., Madani N., Sodroski J., Schön A., Freire E., Kwong P.D., Hendrickson W.A., Chaiken I.M., LaLonde J.M., Smith A.B. III. Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: Conversion of a viral entry agonist to an antagonist. Acc. Chem. Res. 2014;47:1228–1237.
  32. O'Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. Open Babel: An open chemical toolbox. Journal of Cheminformatics. 2011;3. Article No. 33. doi: 10.1186/1758-2946-3-33
  33. Rappe A.K., Casewit C.J., Colwell K.S., Goddard III W.A., Skiff W.M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc.1992;114:10024–10035.
  34. Stewart J.J.P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 2013;19:1–32. doi: 10.1007/s00894-012-1667-x
  35. Stewart J.J.P. MOPAC2016. Colorado Springs: Stewart Computational Chemistry, 2016. http://OpenMOPAC (accessed 20 September 2019).
  36. Klamt A., Schüürmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 1993;2:799–805. doi: 10.1039/P29930000799
  37. Klamt A. From quantum chemistry to fluid phase thermodynamics and drug design. Boston, MA, USA: Elsevier, 2005.
  38. Klamt A., Moya C., Palomar J. A comprehensive comparison of the IEFPCM and SS(V)PE continuum solvation methods with the COSMO approach. J. Chem. Theory Comput. 2015;11:4220–4225. doi: 10.1021/acs.jctc.5b00601
  39. Høyvik I.-M., Jansik B., Jørgensen P. Trust region minimization of orbital localization functions. J. Chem. Theory Comput. 2012;8:3137–3146.
  40. Lehtola S., Jónsson H. Unitary optimization of localized molecular orbitals. J. Chem. Theory Comput. 2013;9:5365–5372. doi: 10.1021/ct400793q
  41. Durrant J.D., McCammon J.A. BINANA: A novel algorithm for ligand-binding characterization. J. Mol. Graph. Model. 2011;29:888–893.
  42. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera − a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25(13):1605–1612.
  43. McDonald I.K., Thornton J.M. Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 1994;238:777–793.
  44. Case D.A., Betz R.M., Cerutti D.S., Cheatham T.E., Darden III, T.A., Duke R.E., Giese T.J., Gohlke H., Goetz A.W., Homeyer N. et al. AMBER 2016. San Francisco: University of California, 2016.
  45. Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935.
  46. Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. Development and testing of a general Amber force field. J. Comput. Chem. 2004;25:1157–1174.
  47. Sun H., Li Y., Tian S., Xu L., Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys. Chem. Chem. Phys. 2014;16:6719−16729. doi: 10.1039/C4CP01388C
  48. Xu L., Sun H., Li Y., Wang J., Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. J. Phys. Chem. B. 2013;117:8408−8421. doi: 10.1021/jp404160y
  49. Sun H., Li Y., Shen M., Tian S., Xu L., Pan P., Guan Y., Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys. Chem. Chem. Phys. 2014;16:22035−22045. doi: 10.1039/C4CP03179B
  50. Ryckaert J.P., Ciccotti G., Berendsen H.J.C. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341.
  51. Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593.
  52. Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J.L., Dror R.O., Shaw D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–1958. doi: 10.1002/prot.22711
  53. Kwong P.D, Wyatt R., Robinson J., Sweet R.W., Sodroski J., Hendrickson W.A. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 1998;393:648–659. doi: 10.1038/31405
  54. Liu Y., Schön A., Freire E. Optimization of CD4/gp120 inhibitors by thermodynamic-guided alanine-scanning mutagenesis. Chem. Biol. Drug Des. 2013;81:72–78.
  55. Moebius U., Clayton L.K., Abraham S., Harrison S.C., Reinherz E.L. The human immunodeficiency virus-gp120 binding-site on CD4 – Delineation by quantitative equilibrium and kinetic binding studies of mutants in conjunction with a high-resolution CD4 atomic-structure. J. Exp. Med. 1992;176:507–517.
  56. Olshevsky U., Helseth E., Furman C., Li J., Haseltine W., Sodroski J. Identification of individual human-immunodeficiency-virus type-1 gp120 amino-acids important for CD4 receptor-binding. J. Virol. 1990;64:5701–5707.
  57. Durrant J.D., McCammon J.A. NNScore 2.0: A neural-network receptor–ligand scoring function. J. Chem. Inf. Model. 2011;51:2897–2903.
  58. Sharma G., First E.A. Thermodynamic Analysis Reveals a Temperature-dependent Change in the Catalytic Mechanism of Bacillus stearothermophilus Tyrosyl-tRNA Synthetase. J. Biol. Chem. 2009;284:4179–4190.
  59. Christensen A.S., Kubař T., Cui Q., Elstner M. Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications. Chem. Rev. 2016;116(9):5301–5337.
  60. Sulimov A.V., Kutov D.C., Katkova E.V., Sulimov V.B. Combined docking with classical force field and quantum chemical semiempirical method PM7. Adv. Bioinformatics. 2017;5:1–6.
  61. Le-Khac M. Structure-based design of small molecule inhibitors of HIV-1 entry: Doctoral Thesis. Columbia University, 2013. doi: 10.7916/D8W09D5Q
  62. Myszka D.G., Sweet R.W., Hensley P., Brigham-Burke M., Kwong P.D., Hendrickson W.A., Wyatt R., Sodroski J., Doyle M.L. Energetics of the HIV gp120-CD4 binding reaction. Proc. Natl .Acad. Sci. USA. 2000;97:9026–9031. doi: 10.1073/pnas.97.16.9026
Содержание Оригинальная статья
Мат. биол. и биоинф.
2019;14(2):430-449
doi: 10.17537/2019.14.430
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы

 

  Copyright ИМПБ РАН © 2005-2024