Русская версия English version   
Том 14   Выпуск 2   Год 2019
Соколов А.В.1, Болондинский В.К.2, Волошинов В.В.1

Технология сбалансированной идентификации для выбора математической модели транспирации сосны

Математическая биология и биоинформатика. 2019;14(2):665-682.

doi: 10.17537/2019.14.665.

Список литературы

 

  1. Sokolov A.V., Voloshinov V.V. Choice of mathematical model: balance between complexity and proximity to measurements. International Journal of Open Information Technologies. 2018;6(9):33–41.(in Russ.).
  2. Sokolov A., Voloshinov V. Balanced Identification as an Intersection of Optimization and Distributed Computing. arXiv:1907.13444 [math.OC]. 2019.
  3. Smirnov S., Voloshinov V., Sukhosroslov O. Distributed Optimization on the Base of AMPL Modeling Language and Everest Platform. In: Procedia Computer Science. 2016;101:313–322. doi: 10.1016/j.procs.2016.11.037
  4. Sukhoroslov O., Volkov S., Afanasiev A. A Web-Based Platform for Publication and Distributed Execution of Computing Applications. In: Parallel and Distributed Computing: Proc. 14th International Symposium on IEEE. Cambridge, USA; 2015. P. 175–184. doi: 10.1109/ISPDC.2015.27
  5. Tikhonov A.N. In: Problemy vychislitel'noi matematiki (Problems of Computational Mathematics). Moscow; 1980. P. 3–17 (in Russ.).
  6. Nicholson B., Siirola J.D., Watson J.-P., Zavala V.M., Biegler L.T. pyomo.dae: a modeling and automatic discretization framework for optimization with differential and algebraic equations. Mathematical Programming Computation. 2018;10(2):187–223. doi: 10.1007/s12532-017-0127-0
  7. Schoukens J., Ljung L. Nonlinear System Identification: A User-Oriented Roadmap. arXiv: 1902.00683 [cs.SY]. 2019.
  8. Clewley R. Hybrid models and biological model reduction with PyDSTool. PLoS computational biology. 2012;8(8). Article No. e1002628. doi: 10.1371/journal.pcbi.1002628
  9. Guzmán J.L., Rrivera D.E., Dormido S., Berenguel M. ITSIE: An interactive software tool for system identification. Adv. Eng. Softw. 2012;45(1):115–123. doi: 10.1016/j.advengsoft.2011.09.013
  10. Niinemets Ü., Anten N.P.R. Packing the photosynthetic machinery: from leaf to canopy. In: Photosynthesis in silico Advances in Photosynthesis and Respiration. Eds. A. Laisk, L. Nedbal, Govindjee. Netherlands: Springer; 2009. P. 363–399.
  11. Olchev A.V., Deshcherevskaya O.A., Kurbatova Yu.A., Molchanov A.G., Novenko E.Yu., Pridacha V.B., Sazonova T.A. CO2 and H2O exchange in the forest ecosystems of southern taiga under climate changes. Doklady Biological Sciences. 2013;450:173–176. doi: 10.1134/S0012496613030216
  12. Wieser G., Leo M., Oberhuber W. Transpiration and canopy conductance in an inner alpine Scots pine (Pinus sylvestris L.) forest. Flora. 2014;209(9):491–498. doi: 10.1016/j.flora.2014.06.012
  13. Wieser G., Gruber A., Oberhuber W. Growing season water balance of an inner alpine Scots pine (Pinus sylvestris L.) forest. IForest. 2018;11:469–475. doi: 10.3832/ifor2626-011
  14. Kazimirov N.I., Volkov A.D., Ziabchenko S.S., Ivanchikov A.A., Morozova R.M. Obmen veshchestv i energii v sosnovykh lesakh Evropeiskogo Severa (Metabolism and energy in the pine forests of the European North). Leningrad: Nauka; 1977. 304 p. (in Russ.).
  15. Kaibijainen L.К. Ecophysiological studies of pine and pine stands. Proceedings of Karelian Research Centre of RAS. 2003;5:65–73 (in Russ.).
  16. Veselkov B.M. In: Biofizicheskie metody issledovanii v ekofiziologii drevesnykh rastenii (Biophysical research methods in the ecophysiology of woody plants). Leningrad; 1979. P. 50–67 (in Russ.).
  17. Veselkov B.M., Tikhov P.V. Fiziologiia rastenii (Plant physiology). 1984;31:1099–1107 (in Russ.).
  18. Urban J., Ingwers M.W., McGuire M.A., Teskey R.O. Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. Journal of Experimental Botany. 2017;68(7):1757–1767. doi: 10.1093/jxb/erx052
  19. Rodríguez-Gamir J., Xue J., Clearwater M.J., Meason D.F., Clinton P.W., Domec J.-C. Aquaporin regulation in roots controls plant hydraulic conductance, stomatal conductance, and leaf water potential in Pinus radiate under water stress. Plant Cell Environ. 2019;42:717–729. doi: 10.1111/pce.13460
  20. In: Photosynthcsis, Vol. 2. Ed. Govindzhi. Moscow: Mir; 1987:273–364.
  21. Psikhrometricheskie tablitsy (Psychrometric Tables): the handbook . Leningrad; 1972. 235 p. (in Russ.).
  22. Korpilahti E. Photosynthetic production of Scots pine in the natural environment. Acta Forestalia Fennica. 1988;202. Article id 7649. doi: 10.14214/aff.7649
Содержание Оригинальная статья
Мат. биол. и биоинф.
2019;14(2):665-682
doi: 10.17537/2019.14.665
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы

 

  Copyright ИМПБ РАН © 2005-2024