Русская версия English version   
Том 14   Выпуск 2   Год 2019
Панкратова Н.М. 1, Поликарпов М.А.2, Тарасов Е.Ф.3, Рыкунов С.Д.1, Устинин М.Н.1

Спектральные и пространственные характеристики активности структур головного мозга, участвующих в восприятии и производстве речи

Математическая биология и биоинформатика. 2019;14(2):705-719.

doi: 10.17537/2019.14.705.

Список литературы

 

  1. Eling P. Broca on the relation between handedness and cerebral speech dominance. Brain and language. 1984;22(1):158–159. doi: 10.1016/0093-934X(84)90085-3
  2. Broca P. Remarks on the seat of the faculty of articulated language, following an observation of aphemia (loss of speech). Bulletin de la Société Anatomique. 1861;6:330–357.
  3. Geschwind N. Carl Wernicke, the Breslau School and the history of aphasia. In: Selected papers on language and the brain. Springer Netherlands; 1974. P. 42–61. doi: 10.1007/978-94-010-2093-0_4
  4. Chuprikova N.I. In: Differentsionno-integratsionnaia teoriia razvitiia (Differential integration theory of development). 2017;2:165–190 (in Russ.).
  5. Naatanen R., Paavilainen P., Tiitinen H., Jiang D., Alho K. Attention and MMN. Psychophysiology. 1993;30:436–450. doi: 10.1111/j.1469-8986.1993.tb02067.x
  6. Kropotov Iu.D. Kolichestvennaia EEG, kognitivnye vyzvannye potentsialy mozga cheloveka i neiroterapiia (Quantitative EEG, cognitive evoked potentials of the human brain and neurotherapy). Donetsk; 2010. 512 p. (in Russ.).
  7. Revenok E.V., Gnezditskii V.V., Korepina O.S. In: Opyt primeneniia vyzvannykh potentsialov v klinicheskoi praktike. (Experience in using evoked potentials in clinical practice) Eds. V.V. Gnezditskii, A.M. Shamshinova. Moscow; 2001:160–182.(in Russ.).
  8. Cohen D. Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents. Science. 1968;161:784–786. doi: 10.1126/science.161.3843.784
  9. Berger H. Uber das Elektrenkephalogramm des Menschen. Arch. Psychiat. Nervenkr. 1929;7:527–570. doi: 10.1007/BF01797193
  10. Vrba J., Robinson S.E. Signal Processing in Magnetoencephalography. Methods. 2001;25:249–271. doi: 10.1006/meth.2001.1238
  11. Baillet S. MEG for Brain Electrophysiology & Imaging. Nature Neuroscience. 2017;20:327–339. doi: 10.1038/nn.4504
  12. Mollo G., Cornelissen P.L., Millman R.E., Ellis A.W., Jefferies E. Oscillatory Dynamics Supporting Semantic Cognition: MEG Evidence for the Contribution of the Anterior Temporal Lobe Hub and Modality-Specific Spokes. PLoS ONE. 2017;12(1). Article No. e0169269. doi: 10.1371/journal.pone.0169269
  13. Dikker S., Pylkkänen L. Predicting language: MEG evidence for lexical preactivation. Brain & Language. 2013;127:55–64. doi: 10.1016/j.bandl.2012.08.004
  14. Salmelin R. Clinical neurophysiology of language: the MEG approach. Clin Neurophysiol. 2007;118(2):237–254. doi: 10.1016/j.clinph.2006.07.316
  15. Ganushchak L.Y., Christoffels I.K., Schiller N.O. The use of electroencephalography in language production research: a review. Front. Psychology. 2011;2:208. doi: 10.3389/fpsyg.2011.00208
  16. Piai V., Ries S.K., Knight R.T. The electrophysiology of language production: what could be improved. Front. Psychol. 2015;5:1560. doi: 10.3389/fpsyg.2014.01560
  17. Pang E.W., Wang F., Malone M., Kadis D.S., Donner E.J. Localization of Broca’s area using verb generation tasks in the MEG: Validation against fMRI. Neurosci. Lett. 2011;490(3):215–219. doi: 10.1016/j.neulet.2010.12.055
  18. Kadis D.S., Pang E.W., Mills T., Taylor M.J., McAndrews M.P., Smith M.L. Characterizing the Normal Developmental Trajectory of Expressive Language Lateralization Using Magnetoencephalography. Journal of the International Neuropsychological Society. 2011;17:896–904. doi: 10.1017/S1355617711000932
  19. Yu V.Y., De Nil L.F., MacDonald M.J., Oh A., Hua G.N., Pang E.W. Age-Related Sex Differences in Language Lateralization: A Magnetoencephalography Study in Children. Developmental Psychology. 2014;50(9):2276–2284. doi: 10.1037/a0037470
  20. Kadis D.S., Dimitrijevic A., Toro-Serey C.A., Smith M.L., Holland S.K. Characterizing Information Flux Within the Distributed Pediatric Expressive Language Network: A Core Region Mapped Through fMRI-Constrained MEG Effective Connectivity Analyses. Brain Connectivity. 2016;6(1). doi: 10.1089/brain.2015.0374
  21. Rezaie R., Narayana S., Schiller K., Birg L., Wheless J.W., Boop F.A., Papanicolaou A.C. Assessment of hemispheric dominance for receptive language in pediatric patients under sedation using magnetoencephalography. Frontiers in Human Neuroscience. 2014;8. Article No. 657. doi: 10.3389/fnhum.2014.00657
  22. Wilke M., Hauser T.K., Krageloh-Mann I., Lidzba K. Specific impairment of functional connectivity between language regions in former early preterms. Hum. Brain Mapp. 2014;35:3372–3384. doi: 10.1002/hbm.22408
  23. Barnes-Davis M.E., Merhar S.L., Holland S.K., Kadis D.S. Extremely preterm children exhibit increased interhemispheric connectivity for language: findings from fMRI-constrained MEG analysis. Developmental Science. 2018;21. Article No. e12669. doi: 10.1111/desc.12669
  24. Youssofzadeh V., Williamson B.J., Kadis D.S. Mapping Critical Language Sites in Children Performing Verb Generation: Whole-Brain Connectivity and Graph Theoretical Analysis in MEG. Frontiers in Human Neuroscience. 2017;11. Article No. 173. doi: 10.3389/fnhum.2017.00173
  25. Kielar A., Panamsky L., Links K.A., Meltzer J.A. Localization of electrophysiological responses to semantic and syntactic anomalies in language comprehension with MEG. NeuroImage. 2015;105:507–524. doi: 10.1016/j.neuroimage.2014.11.016
  26. Brennan J., Pylkkänen L. The time-course and spatial distribution of brain activity associated with sentence processing. NeuroImage. 2012;60:1139–1148. doi: 10.1016/j.neuroimage.2012.01.030
  27. Herrmann B., Maess B., Hahne A., Schröger E., Friederici A.D. Syntactic and auditory spatial processing in the human temporal cortex: An MEG study. NeuroImage. 2011;57(2):624–633. doi: 10.1016/j.neuroimage.2011.04.034
  28. Pylkkänen L., Bemis D.K., Elorrieta E.B. Building phrases in language production: An MEG study of simple composition. Cognition. 2014;133:371–384. doi: 10.1016/j.cognition.2014.07.001
  29. Williams A., Reddigari S., Pylkkänen L. Early sensitivity of left perisylvian cortex to relationality in nouns and verbs. Neuropsychologia. 2017;100:131–143. doi: 10.1016/j.neuropsychologia.2017.04.029
  30. Newman A.J., Supalla T., Hauser P., Newport E.L., Bavelier D. Dissociating neural subsystems for grammar by contrasting word order and inflection. PNAS. 2010;107(16):7539–7544. doi: 10.1073/pnas.1003174107
  31. Blanco-Elorrieta E., Pylkkänen L. Bilingual Language Switching in the Laboratory versus in the Wild: The Spatiotemporal Dynamics of Adaptive Language Control. J. Neurosci. 2017;13:37.
  32. Blanco-Elorrieta E., Pylkkänen L. Bilingual Language Control in Perception versus Action: MEG Reveals Comprehension Control Mechanisms in Anterior Cingulate Cortex and Domain-General Control of Production in Dorsolateral Prefrontal Cortex. Journal of Neuroscience. 2016;36(2):290–301. doi: 10.1523/JNEUROSCI.2597-15.2016
  33. Blanco-Elorrieta E., Pylkkänen L. Brain bases of language selection: MEG evidence from Arabic-English bilingual language production. Front Hum Neurosci. 2015;9:27. doi: 10.3389/fnhum.2015.00027
  34. Hagoort P. The fractionation of spoken language understanding by measuring electrical and magnetic brain signals. Philosophical Transactions of the Royal Society B: Biological Sciences. 2008;363(1493):1055–1069. doi: 10.1098/rstb.2007.2159
  35. Zhu Z., Bastiaansen M., Hakun J.G., Petersson K.M., Wang S., Hagoort P. Semantic unification modulates N400 and BOLD signal change in the brain: A simultaneous EEG-fMRI study. Journal of Neurolinguistics. 2019;52:100855. doi: 10.1016/j.jneuroling.2019.100855
  36. Alday P.M. M/EEG analysis of naturalistic stories: a review from speech to language processing. Language, Cognition and Neuroscience. 2019;34(4):457–473. doi: 10.1080/23273798.2018.1546882
  37. Broderick M.P., Anderson A.J., di Liberto G.M., Сrosse M.J., Lalor E.C. Electrophysiological Correlates of Semantic Dissimilarity Reflect the Comprehension of Natural, Narrative Speech. Current Biology. 2018;28:803–809. doi: 10.1016/j.cub.2018.01.080
  38. Murdoch B.E. The cerebellum and language: Historical perspective and review. Сortex. 2010;46:858–868. doi: 10.1016/j.cortex.2009.07.018
  39. Shtyrov Y., Pulvermüller F. Early MEG activation dynamics in the left temporal and inferior frontal cortex reflect semantic context integration. Journ. Cogn. Neurosci. 2007;19:1633–1642.
  40. Shtyrov Y. Automaticity and attentional control in spoken language processing: neurophysiological evidence. Mental Lexicon. 2010;5:255–276. doi: 10.1075/ml.5.2.06sht
  41. Shtyrov Y., Kujala T., Pulvermüller F. Interactions between language and attention systems: early automatic lexical processing? J. Cogn. Neurosci. 2010;22:1465–1478.
  42. Shtyrov Y., Butorina A., Nikolaeva A., Stroganova T. Automatic ultrarapid activation and inhibition of cortical motor systems in spoken word comprehension. PNAS. 2014;111(18). P. E1918–E1923. doi: 10.1073/pnas.1323158111
  43. Mollo G., Pulvermuller F., Hauk O. Movement priming of EEG/MEG brain responses for action-words characterizes the link between language and action. Cortex. 2016;74:262–276. doi: 10.1016/j.cortex.2015.10.021
  44. Shestakova A., Brattico E., Huotilainen M., Galunov V., Soloviev A., Sams M., Ilmoniemi R.J., Näätänen R. Abstract phoneme representations in the left temporal cortex: magnetic mismatch negativity study. NeuroReport. 2002;13:1813–1816. doi: 10.1097/00001756-200210070-00025
  45. Giraud A.-L., Poeppel D. Cortical oscillations and speech processing: emerging computational principles and operations. Nature neuroscience. 2012;15:511–517. doi: 10.1038/nn.3063
  46. Nistratov A.A., Seomina T.V., Tarasov E.F. Semantic characteristics of image perception and their description. Journal of Psycholinguistics. 2016;29:176–178 (in Russ.).
  47. Llinás R.R., Ustinin M.N. Precise Frequency-Pattern Analysis to Decompose Complex Systems into Functionally Invariant Entities: U.S. Patent. US Patent App. Publ. 20160012011 A1. 01/14/2016.
  48. Llinás R.R., Ustinin M.N. Frequency-pattern functional tomography of magnetoencephalography data allows new approach to the study of human brain organization. Front. Neural Circuits. 2014;8. Article No. 43. doi: 10.3389/fncir.2014.00043
  49. Llinás R.R., Ustinin M.N., Rykunov S.D., Boyko A.I., Sychev V.V., Walton K.D., Rabello G.M., Garcia J. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data. Front. Neurosci. 2015;9. Article No. 373. doi: 10.3389/fnins.2015.00373
  50. Belouchrani A., Abed-Meraim K., Cardoso J.-F., Moulines E. A blind source separation technique using second-order statistics. IEEE Trans. Signal Processing. 1997;45:434–444. doi: 10.1109/78.554307
  51. Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 1987;32(1):11–22. doi: 10.1088/0031-9155/32/1/004
Содержание Оригинальная статья
Мат. биол. и биоинф.
2019;14(2):705-719
doi: 10.17537/2019.14.705
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы

 

  Copyright ИМПБ РАН © 2005-2024