Бойко И.Ю., Анисимов Д.С., Смолякова Л.Л., Рязанов М.А.
Подход к отбору значимых признаков при решении биомедицинских задач бинарной классификации данных с микрочипов
Математическая биология и биоинформатика. 2020;15(1):4-19.
doi: 10.17537/2020.15.4.
Список литературы
- Renard B.Y., Löwer M., Kühne Y., Reimer U., Rothermel A., Türeci O., Castle J.C., Sahin U. Rapmad: Robust analysis of peptide microarray data. BMC Bioinformatics. 2011;12. doi: 10.1186/1471-2105-12-324
- Önskog J., Freyhult E., Landfors M., Rydén P., Hvidsten T.R. Classification of microarrays; synergistic effects between normalization, gene selection and machine learning. BMC Bioinformatics. 2011;12. doi: 10.1186/1471-2105-12-390
- Mohammed A., Biegert G., Adamec J., Helikar T. CancerDiscover: An integrative pipeline for cancer biomarker and cancer class prediction from high-throughput sequencing data. Oncotarget. 2018;9(2):2565-2573. doi: 10.18632/oncotarget.23511
- Alanni R., Hou J., Azzawi H., Xiang Y. A novel gene selection algorithm for cancer classification using microarray datasets. BMC Med Genomics. 2019;12. doi: 10.1186/s12920-018-0447-6
- Xi M., Sun J., Liu L., Fan F., Wu X. Cancer Feature Selection and Classification Using a Binary Quantum-Behaved Particle Swarm Optimization and Support Vector Machine. Computational and Mathematical Methods in Medicine. 2016;2016:1–9. doi: 10.1155/2016/3572705
- Hira Z., Gillies D. A review of feature selection and feature extraction methods applied on microarray data. Advances in Bioinformatics. 2015;2015:1-13. doi: 10.1155/2015/198363
- Saeys Y., Inza I., Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23(19):2507-2517. doi: 10.1093/bioinformatics/btm344
- Lazar C., Taminau J., Meganck S., Steenhoff D., Coletta A., Molter C., de Schaetzen V., Duque R., Bersini H., Nowe A. A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2012;9(4):1106-1119. doi: 10.1109/TCBB.2012.33
- Jafari P., Azuaje F. An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors. BMC Medical Informatics and Decision Making. 2006;6. doi: 10.1186/1472-6947-6-27
- Nguyen T., Khosravi A., Creighton D., Nahavandi S. Hierarchical Gene Selection and Genetic Fuzzy System for Cancer Microarray Data Classification. PLoS ONE. 2015;10(3). doi: 10.1371/journal.pone.0120364
- Shahjaman M., Rahman M., Islam S., Mollah M. A Robust Approach for Identification of Cancer Biomarkers and Candidate Drugs. Medicina. 2019;55(6). doi: 10.3390/medicina55060269
- Maniruzzaman M., Rahman J., Ahammed B., Abedin M., Suri H., Biswas M., El-Baz A., Bangeas P., Tsoulfas G., Suri J. Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms. Computer Methods and Programs in Biomedicine. 2019;176:173-193. doi: 10.1016/j.cmpb.2019.04.008
- Momenzadeh M., Sehhati M., Rabbani H. A novel feature selection method for microarray data classification based on hidden Markov model. Journal of Biomedical Informatics. 2019;95. doi: 10.1016/j.jbi.2019.103213
- Boareto M., Caticha N. t-Test at the Probe Level: An Alternative Method to Identify Statistically Significant Genes for Microarray Data. Microarrays. 2014;3(4):340-351. doi: 10.3390/microarrays3040340
- Fox R., Dimmic M. A two-sample Bayesian t-test for microarray data. BMC Bioinformatics. 2006;7. doi: 10.1186/1471-2105-7-126
- Shukla A., Tripathi D. Identification of potential biomarkers on microarray data using distributed gene selection approach. Mathematical Biosciences. 2019;315. doi: 10.1016/j.mbs.2019.108230
- Bolon-Canedo V., Sanchez-Marono N., Alonso-Betanzos A., Benitez J., Herrera F. A review of microarray datasets and applied feature selection methods. Information Sciences. 2014;282:111–135. doi: 10.1016/j.ins.2014.05.042
- Aboudi N., Benhlima L. Review on wrapper feature selection approaches. In: 2016 International Conference on Engineering & MIS (ICEMIS). IEEE, 2016. P. 1–5. doi: 10.1109/ICEMIS.2016.7745366
- Sanz H., Valim C., Vegas E., Oller J., Reverter F. SVM-RFE: selection and visualization of the most relevant features through non-linear kernels. BMC Bioinformatics. 2018;19. doi: 10.1186/s12859-018-2451-4
- Li Z., Xie W., Liu T. Efficient feature selection and classification for microarray data. PLoS ONE. 2018;13(8). doi: 10.1371/journal.pone.0202167
- Anaissi A., Kennedy P., Goyal M. Feature selection of imbalanced gene expression microarray data. In: 2011 12th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). IEEE, 2011. P. 73–78. doi: 10.1109/SNPD.2011.12
- Kang C., Huo Y., Xin L., Tian B., Yu B. Feature selection and tumor classification for microarray data using relaxed Lasso and generalized multi-class support vector machine. Journal of Theoretical Biology. 2019;463:77–91. doi: 10.1016/j.jtbi.2018.12.010
- Chuang L., Yang C., Wu K., Yang C. A hybrid feature selection method for DNA microarray data. Computers in Biology and Medicine. 2011;41(4):228–237. doi: 10.1016/j.compbiomed.2011.02.004
- Huijuan L., Junying C., Ke Y., Qun J., Yu X., Zhigang G. A hybrid feature selection algorithm for gene expression data classification. Neurocomputing. 2017;256:56–62. doi: 10.1016/j.neucom.2016.07.080
- Shukla A., Singh P., Vardhan V. A hybrid gene selection method for microarray recognition. Biocybernetics and Biomedical Engineering. 2018;38(4):975–991. doi: 10.1016/j.bbe.2018.08.004
- Sun Y., Lu C., Li X. The Cross-Entropy Based Multi-Filter Ensemble Method for Gene Selection. Genes. 2018;9(5). doi: 10.3390/genes9050258
- Bolon-Canedo V., Sanchez-Marono N., Alonso-Betanzos A. An ensemble of filters and classifiers for microarray data classification. Pattern Recognition. 2012;45(1):531–539. doi: 10.1016/j.patcog.2011.06.006
- Bolon-Canedo V., Sanchez-Marono N., Alonso-Betanzos A. Data classification using an ensemble of filters. Neurocomputing. 2014;135:13–20. doi: 10.1016/j.neucom.2013.03.067
- Strimbu K., Tavel J.A. What are Biomarkers? Current Opinion in HIV and AIDS. 2010;192(3):214–216. doi: 10.1097/COH.0b013e32833ed177
- Dronov S.V., Petukhova R.V. Izvestiia AltGU (Izvestiya of Altai State University). 2010;65(1/2):34–36 (in Russ.).
- Dronov S.V., Boyko I.Yu. Method for estimating connection power of binary and nominal variables. Prikl. Diskr. Mat. 2015;30(4):109–119. doi: 10.17223/20710410/30/11
- Anisimov D.S., Podlesnykh S.V., Kolosova E.A., Shcherbakov D.N., Petrova V.D., Johnston S.A., Lazarev A.F., Oskorbin N.N., Shapoval A.I., Ryazanov M.A. Projection to Latent Structures as a Strategy for Peptides Microarray Data Analysis. Mathematical Biology and Bioinformatics. 2017;12(2):435–445. doi: 10.17537/2017.12.435
- Gravier E. A prognostic DNA signature for T1T2 node-negative breast cancer patients. Genes, Chromosomes and Cancer. 2010;49(12):1125–1134. doi: 10.1002/gcc.20820
- Student. The probable error of a mean. Biometrika. 1908;6(1):1–25. doi: 10.2307/2331554
- Mann H.B., Whitney D.R. On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics. 1947;18:50–60. doi: 10.1214/aoms/1177730491
- Anisimov D.S., Riazanov M.A., Shapoval A.I. In: Sbornik trudov vserossiiskoi konferentsii po matematike "MAK-2016" (Collection of proceedings of the All-Russian Conference on Mathematics "MAK-2016"). Barnaul, 2016. P. 92 (in Russ.).
- Esbensen K.H. Analiz mnogomernykh dannykh. Izbrannye glavy (Multivariate Data Analysis. Selected Chapters). Barnaul, 2003. 157 p. (in Russ.).
- Cox D.R. The regression analysis of binary sequences. Journal of the Royal Statistical Society. 1958;20(2):215–242. doi: 10.1111/j.2517-6161.1958.tb00292.x
- Vapnik V.N. Recovery of dependencies based on empirical data. New York: Springer, 1982.
- Cover T.M., Hart P.E. Nearest neighbor pattern classification. IEEE Transactions on Information Theory. 1967;13(1):21–27. doi: 10.1109/TIT.1967.1053964
- Breiman L. Random Forests. Machine Learning. 2001;45(1):5–32. doi: 10.1023/A:1010933404324
- Boser B.E., Guyon I.M., Vapnik V.N. A Training Algorithm for Optimal Margin Classifiers. In: Proceedings of the 5th Annual Workshop on Computational Learning Theory – COLT’92 (Pittsburgh. 27–29 July 1992). New York, 1992. P. 144–152. doi: 10.1145/130385.130401
- Hyperopt: Distributed Asynchronous Hyper-parameter Optimization. https://github.com/hyperopt/hyperopt (accessed 16 April 2019).
- Youden W.J. Index for rating diagnostic tests. Cancer. 1950;3(1):32–35. doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
|
|
|