Русская версия English version   
Том 17   Выпуск 2   Год 2022
Шульдов Н.А.1,2, Юшкевич А.М.1, Фурс К.В.1, Тузиков А.В.1, Андрианов А.М.3

Разработка генеративной нейронной сети глубокого обучения для компьютерного дизайна потенциальных ингибиторов коронавируса SARS-CoV-2

Математическая биология и биоинформатика. 2022;17(2):188-207.

doi: 10.17537/2022.17.188.

Список литературы

  1. Katsila T., Spyroulias G.A., Patrinos G.P., Matsoukas M.-T. Computational approaches in target identification and drug discovery. Comput. Struct. Biotechnol. J. 2016;14:177–184. doi: 10.1016/j.csbj.2016.04.004
  2. Knight-Schrijver V.R., Chelliah V., Cucurull-Sanchez L., Le Novère N. The promises of quantitative systems pharmacology modelling for drug development. Comput. Struct. Biotechnol. J. 2016;4:363–370. doi: 10.1016/j.csbj.2016.09.002
  3. Vamathevan J., Clark D., Czodrowski P., Dunham I., Ferran E., Lee G., Li B., Madabhushi A., Shah P., Spitzer M., Zhao S. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019;18(6):463–477. doi: 10.1038/s41573-019-0024-5
  4. Lipinski C.F., Maltarollo V.G., Oliveira P.R., da Silva A.B.F., Honorio K.M. Advances and perspectives in applying deep learning for drug design and discovery. Front. Robotics and AI. 2019;6:108. doi: 10.3389/frobt.2019.00108
  5. Dobchev D.A., Pillai G.G., Karelson M. In silico machine learning methods in drug development. Curr. Top. Med. Chem. 2014;14(16):1913–1922. doi: 10.2174/1568026614666140929124203
  6. Cherkasov A., Muratov E.N., Fourches D., Varnek A., Baskin II, Cronin M, Dearden J., Gramatica P., Martin Y.C., Todeschini R., Consonni V., Kuz'min V.E., Cramer R., Benigni R., Yang C., Rathman J., Terfloth L., Gasteiger J., Richard A., Tropsha A. QSAR modeling: where have you been? Where are you going to? J. Med. Chem. 2014;57(12):4977–5010. doi: 10.1021/jm4004285
  7. Kinnings S.L., Liu N., Tonge P.J., Jackson R.M., Xie L., Bourne P.E. A Machine learning-based method to improve docking scoring functions and its application to drug repurposing. J. Chem. Inf. Model. 2011;51(2):408−419. doi: 10.1021/ci100369f
  8. Agastheeswaramoorthy K., Sevilimedu A. Drug REpurposing using AI/ML tools - for Rare Diseases (DREAM-RD): A case study with Fragile X Syndrome (FXS). 2020. bioRxiv. doi: 10.1101/2020.09.25.311142
  9. Senior A.W., Evans R., Jumper J., Kirkpatrick J., Sifre L., Green T., Qin C., Zıdek A., Nelson A.W.R., Bridgland A., Penedones H., Petersen S., Simonyan K., Crossan S., Kohli P., Jones D.T., Silver D., Kavukcuoglu K., Hassabis D. Improved protein structure prediction using potentials from deep learning. Nature. 2020;577:706–710. doi: 10.1038/s41586-019-1923-7
  10. Li H., Sze K.-H., Lu G., Ballester P.J. Machine-learning scoring functions for structure-based virtual screening. WIREs Comput. Mol. Sci. 2020;11. Article No. e1478. doi: 10.1002/wcms.1478
  11. Xiong G.-L., Ye W.-L., Shen C., Lu A.-P., Hou T.-J., Cao D.-S. Improving structure-based virtual screening performance via learning from scoring function components. Brief. Bioinform. 2020;22. doi: 10.1093/bib/bbaa094
  12. Stokes J.M., Yang K., Swanson K., Jin W., Cubillos-Ruiz A., Donghia N.M., MacNair C.R., French S., Carfrae L.A., Bloom-Ackermann Z., Tran V.M., Chiappino-Pepe A., Badran A.H., Andrews I.W., Chory E.J., Church J.M., Brown E.D., Jaakkola T.S., Barzilay R., Collins J.J. A deep learning approach to antibiotic discovery. Cell. 2020;180(4):688–702. doi: 10.1016/j.cell.2020.01.021
  13. Timmons P.B., Hewage C.M. ENNAVIA is a novel method which employs neural networks for antiviral and anti-coronavirus activity prediction for therapeutic peptides. Brief. Bioinform. 2021;22. doi: 10.1093/bib/bbab258
  14. Andrianov A.M., Nikolaev G.I., Shuldov N.A., Bosko I.P., Anischenko A.I., Tuzikov A.V. Application of deep learning and molecular modeling to identify small drug-like compounds as potential HIV-1 entry inhibitors. J. Biomol. Struct. Dyn. 2021;15:1–19. doi: 10.1080/07391102.2021.1905559
  15. Zhang Y., Ye T., Xi H., Juhas M., Li J. Deep learning driven drug discovery: Tackling Severe Acute Respiratory Syndrome Coronavirus 2. Front. Microbiol. 2021. doi: 10.3389/fmicb.2021.739684
  16. Mercado R., Rastemo T., Lindelöf E., Klambauer G., Engkvist O., Chen H., Bjerrum E.J. Practical notes on building molecular graph generative models. ChemRxiv. Preprint. 2020. doi: 10.26434/chemrxiv.12888383
  17. Arús-Pous J., Blaschke T., Ulander S., Reymond J.L., Chen H., Engkvist O. Exploring the GDB-13 chemical space using deep generative models. J. Cheminform. 2019;11. Article No. 20. doi: 10.1186/s13321-019-0341-z
  18. Prykhodko O., Johansson S.V., Kotsias P.C., Arús-Pous J., Bjerrum E.J., Engkvist O., Chen H. A de novo molecular generation method using latent vector based generative adversarial network. J. Cheminform. 2019;11. No. 1. Article No. 74. doi: 10.1186/s13321-019-0397-9
  19. Polykovskiy D., Zhebrak A., Vetrov D., Ivanenkov Y., Aladinskiy V., Mamoshina P., Bozdaganyan M., Aliper A., Zhavoronkov A., Kadurin A. Entangled conditional adversarial autoencoder for de novo drug discovery. Mol. Pharmaceutics. 2018;15(10):4398–4405. doi: 10.1021/acs.molpharmaceut.8b00839
  20. Zhang J., Mercado R., Engkvist O., Chen H. Comparative study of deep generative models on chemical space coverage. ChemRxiv. Preprint. 2020. doi: 10.26434/chemrxiv.13234289.v1
  21. Zhavoronkov A., Ivanenkov Y.A., Aliper A., Veselov M.S., Aladinskiy V.A., Aladinskaya A.V., Terentiev V.A., Polykovskiy D.A., Kuznetsov M.D., Asadulaev A., Volkov Yu., Zholus A., Shayakhmetov R.R., Zhebrak A., Minaeva L.I., Zagribelnyy B.A., Lee L.H., Soll R., Madge D., Xing L., Guo T., Aspuru-Guzik A. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 2019;37(9):1038–1040. doi: 10.1038/s41587-019-0224-x
  22. Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., Li Q., Shoemaker B.A., Thiessen P.A., Yu B., Zaslavsky L., Zhang J., Bolton E.E. PubChem in 2021: new data content and improved web interfaces. Nucl. Acids Res. 2021;49(D1). P. D1388–D1395. doi: 10.1093/nar/gkaa971
  23. Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1998;28(1):31–36. doi: 10.1021/ci00057a005
  24. Pillaiyar T., Manickam M., Namasivayam V., Hayashi Y., Jung S.H. An overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J. Med.Chem. 2016;59(14):6595–6628. doi: 10.1021/acs.jmedchem.5b01461
  25. Yan F., Gao F. An overview of potential inhibitors targeting non-structural proteins 3 (PLpro and Mac1) and 5 (3CLpro/Mpro) of SARS-CoV-2. Comp. Struct. Biotechnol. J. 2021;19:4868–4883. doi: 10.1016/j.csbj.2021.08.036
  26. Ullrich S., Nitsche C. The SARS-CoV-2 main protease as drug target. Bioorganic Med. Chem. Lett. 2020;30(17). doi: 10.1016/j.bmcl.2020.127377
  27. Forster P., Forster L., Renfrew C., Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc. Natl. Acad. Ssci. USA. 2020;117(17):9241–9243. doi: 10.1073/pnas.2004999117
  28. Schneidman-Duhovny D., Dror O., Inbar Y., Nussinov R., Wolfson H. J. Deterministic pharmacophore detection via multiple flexible alignment of drug-like molecules. J. Comput. Biol. 2008;15(7):737–754. doi: 10.1089/cmb.2007.0130
  29. Sunseri J., Koes D.R. Pharmit: interactive exploration of chemical space. Nucl. Acids Res. 2016;44. P. W442–W448. doi: 10.1093/nar/gkw287
  30. Filimonov D.A., Druzhilovskiy D.S., Lagunin A.A., Gloriozova T.A., Rudik A.V., Dmitriev A.V., Pogodin P.V., Poroikov V.V. Computer-aided Prediction of Biological Activity Spectra for Chemical Compounds: Opportunities and Limitations. Biomedical Chemistry: Research and Methods. 2018;1. doi: 10.18097/BMCRM00004
  31. Alhossary A., Handoko S.D., Mu Y., Kwoh C.-K. Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics. 2015;31(13):2214–2216. doi: 10.1093/bioinformatics/btv082
  32. Wang S., Witek J., Landrum G.A., Riniker S. Improving conformer generation for small rings and macrocycles based on distance geometry and experimental torsional-angle preferences. J. Chem. Inf. Model. 2020;60:2044–2058. doi: 10.1021/acs.jcim.0c00025
  33. Gasteiger J., Marsili M. A new model for calculating atomic charges in molecules. Tetrahedron Lett. 1978;19:3181–3184. doi: 10.1016/S0040-4039(01)94977-9
  34. Rappe A.K., Casewit C.J., Colwell K.S., Goddard W.A., Skiff W.M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992;114:10024–10035. doi: 10.1021/ja00051a040
  35. O'Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminformatics. 2011;3. Article No. 33. doi: 10.1186/1758-2946-3-33
  36. Halgren T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996;17:490–519. doi: 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
  37. Tosco P., Stiefl N., Landrum G. Bringing the MMFF force field to the RDKit: implementation and validation. J. Cheminformatics. 2014;6. doi: 10.1186/s13321-014-0037-3
  38. Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334
  39. Epstein B., Meir R. Generalization bounds for unsupervised and semi-supervised learning with autoencoders. arXiv: 1902.01449. 2019. doi: 10.48550/arXiv.1902.01449
  40. Hochreiter S., Schmidhuber J. Long Short-Term Memory. Neural Comput. 1997;9:1735–1780. doi: 10.1162/neco.1997.9.8.1735
  41. Agarap A.F. Deep Learning using Rectified Linear Units (ReLU). arXiv: 1803.08375v2. 2019. doi: Cite to nonCR doi: 10.48550/arXiv.1803.08375
  42. Sharma Sid., Sharma Sim., Athaiya A. Activation functions in neural networks. IJEAS. 2020;12:310–316. ISSN 2455-2143. doi: 10.33564/IJEAST.2020.v04i12.054
  43. Kingma D.P., Ba J. Adam: A method for stochastic optimization. arXiv: 1412.6980. 2014. doi: 10.48550/arXiv.1412.6980
  44. Janocha K., Czarnecki W.M. On loss functions for deep neural networks in classification. Schedae Informaticae. 2016;25:49–59. doi: 10.4467/20838476SI.16.004.6185
  45. Shu R., Zhao S., Kochenderfer M.J. Rethinking style and content disentanglement in variational autoencoders. 6th International Conference on Learning Representations, {ICLR} 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings. 2018. https://openreview.net/pdf?id=B1rQtwJDG (accessed 08 September 2022).
Содержание Оригинальная статья
Мат. биол. и биоинф.
2022;17(2):188-207
doi: 10.17537/2022.17.188
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы

 

  Copyright ИМПБ РАН © 2005-2024