Список литературы
- Cockeran M., Meintanis S.G., Allison J.S. Goodness-of-fit tests in the Cox proportional hazards model. Communications in Statistics – Simulation and Computation. 2019;50(12):4132–4143. doi: 10.1007/978-1-4612-0103-8_18
- Emura T., Chen Y.H., Chen, H.Y. Survival prediction based on compound covariate under Cox proportional hazard models. PLoS One. 2012;7(10). Article No. e47627. doi: 10.1371/journal.pone.0047627
- Huang J., Liu L., Liu Y., Zhao X. Group selection in the Cox model with a diverging number of covariates. Statistica Sinica. 2014:1787–1810. doi: 10.5705/ss.2013.061
- Karabey U., Tutkun N.A. Model selection criterion in survival analysis. AIP Conference Proceedings. 2017;1863(1). Article No. 120003. doi: 10.1063/1.4992296
- Leng C., Zhang H.H. Model selection in nonparametric hazard regression. Journal of Nonparametric Statistics. 2006;18(7–8):417–429. doi: 10.1080/10485250601027042
- Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 1996;58(1):267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x
- Fan J., Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association. 2001;96(456):1348–1360. doi: 10.1198/016214501753382273
- Zou H., Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2005;67(2):301–320. doi: 10.1111/j.1467-9868.2005.00503.x
- Zou H. The adaptive lasso and its oracle properties. Journal of the American Statistical Association. 2006;101(476):1418–1429. doi: 10.1198/016214506000000735
- Algamal Z.Y., Lee M.H. Penalized logistic regression with the adaptive LASSO for gene selection in high-dimensional cancer classification. Expert Systems with Applications. 2015;42(23):9326–9332. doi: 10.1016/j.eswa.2015.08.016
- Algamal Z.Y., Lee M.H. Regularized logistic regression with adjusted adaptive elastic net for gene selection in high dimensional cancer classification. Computers in Biology and Medicine. 2015;67:136–145. doi: 10.1016/j.compbiomed.2015.10.008
- Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh M.L., Downing J.R., Caligiuri M.A., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531–537. doi: 10.1126/science.286.5439.531
- Nguyen D.V., Rocke D.M. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics. 2002;18(1):39–50. doi: 10.1093/bioinformatics/18.1.39
- Xiong M., Jin L., Li W., Boerwinkle E. Computational methods for gene expression-based tumor classification. Biotechniques. 2000;29(6):264–1270. doi: 10.2144/00296bc02
- Baldi P., Long A.D. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics. 2001;17(6):509–519. doi: 10.1093/bioinformatics/17.6.509
- Shibly F.H.A., Kumar R.L. Image Processing for Automatic Cell Nucleus Segmentation Using Super pixel and Clustering Methods on Histopathological Images. Tamjeed Journal of Healthcare Engineering and Science Technology. 2023;1(1):54–63. doi: 10.59785/tjhest.v1i1.6
- Statnikov A., Aliferis C.F., Tsamardinos I., Hardin D., Levy S. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics. 2005;21(5):631–643. doi: 10.1093/bioinformatics/bti033
- Liu Y. Detect key gene information in classification of microarray data. EURASIP Journal on Advances in Signal Processing. 2008. Article No. 612397. doi: 10.1155/2008/612397
- Cox D.R. Regression models and life‐tables. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 1972;34(2):187–202. doi: 10.1111/j.2517-6161.1972.tb00899.x
- Du P., Ma S., Liang H. Penalized Variable Selection Procedure for Cox Models with Semiparametric Relative Risk. Ann. Stat. 2010;38(4):2092–2117. doi: 10.1214/09-AOS780
- Fu Z., Parikh C.R., Zhou B. Penalized variable selection in competing risks regression. Lifetime Data Anal. 2017;23(3):353–376. doi: 10.1007/s10985-016-9362-3
- Gui J., Li H. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics. 2005;21(13):3001–3008. doi: 10.1093/bioinformatics/bti422
- Hossain S., Ahmed S.E. Penalized and Shrinkage Estimation in the Cox Proportional Hazards Model. Communications in Statistics – Theory and Methods. 2014;43(5):1026–1040. doi: 10.1080/03610926.2013.826368
- Hou W., Song L., Wang X. Penalized Empirical Likelihood via Bridge Estimator in Cox's Proportional Hazard Model. Communications in Statistics – Theory and Methods. 2013;43(2):426–440. doi: 10.1080/03610926.2012.657325
- Kauermann G. Penalized spline smoothing in multivariable survival models with varying coefficients. Computational Statistics & Data Analysis. 2005;49(1):169–186. doi: 10.1016/j.csda.2004.05.006
- Lin C.Y., Halabi S. A Simple Method for Deriving the Confidence Regions for the Penalized Cox's Model via the Minimand Perturbation. Commun. Stat. Theory Methods. 2017;46(10):4791–4808. doi: 10.1080/03610926.2015.1085568
- Park E., Ha, I.D. Penalized variable selection for accelerated failure time models. Communications for Statistical Applications and Methods. 2018;25(6):591–604. doi: 10.1002/sim.8023
- Shi Y., Xu D., Cao Y., Jiao Y. Variable Selection via Generalized SELO-Penalized Cox Regression Models. Journal of Systems Science and Complexity. 2019;32(2):709–736. doi: 10.1007/s11424-018-7276-8
- Suchting R., Hebert E.T., Ma P., Kendzor D.E., Businelle M.S. Using Elastic Net Penalized Cox Proportional Hazards Regression to Identify Predictors of Imminent Smoking Lapse. Nicotine and Tobacco Research. 2019;21(2):173–179. doi: 10.1093/ntr/ntx201
- Wang D., Wu T. T., Zhao Y. Penalized empirical likelihood for the sparse Cox regression model. Journal of Statistical Planning and Inference. 2019;201:71–85. doi: 10.1016/j.jspi.2018.12.001
- Wu T.T., Gong H., Clarke E.M. A Transcriptome Analysis by Lasso Penalized Cox Regression for Pancreatic Cancer Survival. Journal of Bioinformatics and Computational Biology. 2012;09(Supp01):63–73. doi: 10.1142/S0219720011005744
- Huang H.H., Liang Y. Hybrid L1/2+2 method for gene selection in the Cox proportional hazards model. Comput. Methods Programs Biomed. 2018;164:65–73. doi: 10.1016/j.cmpb.2018.06.004
- Huang J., Sun T., Ying Z., Yu Y., Zhang C.H. Oracle Inequalities for the Lasso in the Cox Model. Ann. Stat. 2013;41(3):1142–1165. doi: 10.1214/13-AOS1098
- Jiang H.K., Liang Y. The L1/2 regularization network Cox model for analysis of genomic data. Comput. Biol. Med. 2018;100:203–208. doi: 10.1016/j.compbiomed.2018.07.009
- Li Y., Dicker L., Zhao S.D. The Dantzig Selector for Censored Linear Regression. Models. Stat. Sin. 2014;24(1):251–2568. doi: 10.5705/ss.2011.220
- Liu C., Liang Y., Luan X.Z., Leung K.S., Chan T.M., Xu Z.B., Zhang H. The L1/2 regularization method for variable selection in the Cox model. Applied Soft. Computing. 2014;14:498–503. doi: 10.1016/j.asoc.2013.09.006
- Zhang H.H., Lu W. Adaptive Lasso for Cox’s Proportional Hazards Model. Biometrika. 2007;94(3):691–703. doi: 10.1093/biomet/asm037
- Bradic J., Fan J., Jiang J. Regularization for Cox’s proportional hazards model with NP-dimensionality. Annals of Statistics. 2011;39(6):3092–3120. doi: 10.1214/11-AOS911
- Goeman J.J. L1 penalized estimation in the Cox proportional hazards model. Biom. J. 2010;52(1):70–84. doi: 10.1002/bimj.200900028
- Tibshirani R. The lasso method for variable selection in the Cox model. Statistics in Medicine. 1997;16(4):385–395. doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
- Simon N., Friedman J., Hastie T., Tibshirani R. Regularization paths for Cox’s proportional hazards model via coordinate descent. Journal of Statistical Software. 2011;39(5):1–13. doi: 10.18637/jss.v039.i05
- Askarzadeh A. A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Computers & Structures. 2016;169:1–12. doi: 10.1016/j.compstruc.2016.03.001
- Kawano S. Selection of tuning parameters in bridge regression models via Bayesian information criterion. Statistical Papers. 2014;55(4):1207–1223. doi: 10.1007/s00362-013-0561-7
- Algamal Z.Y., Lee M.H. Penalized logistic regression with the adaptive LASSO for gene selection in high-dimensional cancer classification. Expert Systems with Applications. 2015;42(23):9326–9332. doi: 10.1016/j.eswa.2015.08.016
- Algamal Z.Y. Shrinkage parameter selection via modified cross-validation approach for ridge regression model. Communications in Statistics-Simulation and Computation. 2020;49(7):1922–1930. doi: 10.1080/03610918.2018.1508704
- Algamal Z.Y. A new method for choosing the biasing parameter in ridge estimator for generalized linear model. Chemometrics and Intelligent Laboratory Systems. 2018;183:96–101. doi: 10.1016/j.chemolab.2018.10.014
- Rosenwald A., Wright G., Chan W.C., Connors J.M., Campo E., Fisher R.I., Gascoyne R.D., Muller-Hermelink H.K., Smeland, E.B., Giltnane, J.M., et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. New England Journal of Medicine. 2002;346(25):1937–1947. doi: 10.1056/NEJMoa012914
- Van Houwelingen H.C., Bruinsma T., Hart A.A., Van't Veer L.J., Wessels L.F. Cross‐validated Cox regression on microarray gene expression data. Statistics in Medicine. 2006;25(18):3201–3216. doi: 10.1002/sim.2353
- Beer D.G., Kardia S.L., Huang C.C., Giordano T.J., Levin A.M., Misek D.E., Lin L., Chen G., Gharib T.G., Thomas D.G., et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nature Medicine. 2002;8(8):816–824. doi: 10.1038/nm733
|
|
|