Russian version English version
Volume 18   Issue 2   Year 2023
Bystrov V.S.1, Paramonova E.V.1, Filippov S.V.1, Avakyan L.A.2, Chaikina M.V.3, Eremina N.V.3, Makarova S.V.3, Bulina N.V.3

Zinc-Substituted Structures of Hydroxyapatite: Modeling and Experiment

Mathematical Biology & Bioinformatics. 2023;18(2):580-601.

doi: 10.17537/2023.18.580.

References

  1. Epple M., Ganesan K., Heumann R., Klesing J., Kovtun A., Neumann S., Sokolova V. Application of calcium phosphate nanoparticles in biomedicine. Journal of Materials Chemistry. 2010;20(1):18–23. doi: 10.1039/B910885H
  2. Comprehensive Biomaterials II. 2nd ed. Eds. Ducheyne P., Healy K., Hutmacher D.E., Grainger D.W., Kirkpatrick C.J. Amsterdam: Elsevier, 2017.
  3. Duminis T., Shahid S., Hill R.G. Apatite Glass-Ceramics: A Review. Front. Mater. 2017;3. Article No. 59. doi: 10.3389/fmats.2016.00059
  4. Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E. Biomaterials Science. Oxford: Academic Press, 2013.
  5. Barinov S.M., Komlev V.S. Biokeramika na osnove fosfatov kal'tsiia (Bioceramics based on calcium phosphates). Moscow, 2005. 204 p.(in Russ.).
  6. Dorozhkin S.V. Calcium orthophosphate deposits: Preparation, properties and biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2015;55:272–326. doi: 10.1016/j.msec.2015.05.033
  7. Ratnayake J.T.B., Mucalo M., Dias G.J. Substituted hydroxyapatites for bone regeneration: A review of current trends. J. Biomed. Mater. Res. B Appl. Biomater. 2017;105:1285–1299. doi: 10.1002/jbm.b.33651
  8. Elliot J.C. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Amsterdam: Elsevier, 1994.
  9. Kay M.I., Young R.A., Posner A.S. Crystal Structure of Hydroxyapatite. Nature (London). 1964;204:1050–1052. doi: 10.1038/2041050a0
  10. Mucalo M. Hydroxyapatite (HAp) for Biomedical Applications. Amsterdam: Elsevier, 2015. doi: 10.1016/B978-1-78242-033-0.00014-6
  11. Šupova M. Substituted hydroxyapatites for biomedical applications: A review. Ceram. Int. 2015;41:9203–9231. doi: 10.1016/j.ceramint.2015.03.316
  12. Fihri A., Len C., Varma R.S., Solhy A. Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 2017;347:48–76. doi: 10.1016/j.ccr.2017.06.009
  13. Bystrov V.S. Computational Studies of the Hydroxyapatite Nanostructures, Peculiarities and Properties. Math. Biol. Bioinform. 2017;12:14–54. doi: 10.17537/2017.12.14
  14. Bystrov V., Bystrova A., Dekhtyar Y., Khlusov I.A., Pichugin V., Prosolov K., Sharkeev Y. Electrical functionalization and fabrication of nanostructured hydroxyapatite coatings. In: Bioceramics and Biocomposites: From Research to Clinical Practice. Ed. A. Jiulian. Hoboken: John Wiley & Sons, Inc., 2019. P. 149–190. doi: 10.1002/9781119372097.ch7
  15. Leon B., Janson J.A. Thin Calcium Phosphate Coatings for Medical Implants. Berkkin: Springer, 2009. doi: 10.1007/978-0-387-77718-4
  16. Baltacis K., Bystrov V., Bystrova A., Dekhtyar Y., Freivalds T., Raines J., Rozenberga K., Sorokins H., Zeidaks M. Physical fundamentals of biomaterials surface electrical functionalization. Materials. 2020;13:4575. doi: 10.3390/ma13204575
  17. Bystrov V.S., Piccirillo C., Tobaldi D.M., Castro P.M.L., Coutinho J., Kopyl S., Pullar R.C. Oxygen vacancies, the optical band gap (Eg) and photocatalysis of hydroxyapatite: Comparing modelling with measured data. Appl. Catal. B Environ. 2016;196:100–107. doi: 10.1016/j.apcatb.2016.05.014
  18. Figueroa-Rosales E.X., Martínez-Juárez J., García-Díaz E., Hernández-Cruz D., Sabinas-Hernández S.A., Robles-Águila M.J. Photoluminescent Properties of Hydroxyapatite and Hydroxyapatite/Multi-Walled Carbon Nanotube Composites. Crystals. 2021;11. Article No. 832. doi: 10.3390/cryst11070832
  19. Oulguidoum A., Bouiahya K., Bouyarmane H., Talbaoui A., Nunzi J.-M., Laghzizil A. Mesoporous nanocrystalline sulfonated hydroxyapatites enhance heavy metal removal and antimicrobial activity. Sep. Purif. Technol. 2020;255. Article No. 117777. doi: 10.1016/j.seppur.2020.117777
  20. Yang P., Yang P., Teng X., Lin J., Huang L. A novel luminescent mesoporous silica/apatite composite for controlled drug release. J. Mater. Chem. 2011;21:5505–5510. doi: 10.1039/c0jm03878d
  21. Wen Y., Li J., Lin H., Huang H., Song K., Duan K., Guo T., Weng J. Improvement of Drug-Loading Properties of Hydroxyapatite Particles Using Triethylamine as a Capping Agent: A Novel Approach. Crystals. 2021;11. Article No. 703. doi: 10.3390/cryst11060703
  22. Degli Esposti L., Carella F., Adamiano A., Tampieri A., Iafisco M. Calcium phosphate-based nanosystems for advanced targeted nanomedicine. Drug Dev. Ind. Pharm. 2018;44:1223–1238. doi: 10.1080/03639045.2018.1451879
  23. Avakyan L., Paramonova E., Bystrov V., Coutinho J., Gomes S., Renaudin G. Iron in Hydroxyapatite: Interstitial or Substitution Sites? Nanomaterials. 2021;11. Article No. 2978. doi: 10.3390/nano11112978
  24. Mondal S., Manivasagan P., Bharathiraja S., Santha Moorthy M., Kim H.H., Seo H., Lee K.D., Oh J. Magnetic hydroxyapatite: A promising multifunctional platform for nanomedicine application. Int. J. Nanomed. 2017;12:8389–8410. doi: 10.2147/IJN.S147355
  25. Tampieri A., D’Alessandro T., Sandri M., Sprio S., Landi E., Bertinetti L., Panseri S., Pepponi G., Goettlicher J., Bañobre-López M. et al. Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater. 2012;8:843–851. doi: 10.1016/j.actbio.2011.09.032
  26. Currey J.D. Bones - Structures and Mechanics. 2nd ed. Princeton: Princeton University Press, 2002.
  27. Crockett J.C., Rogers M.J., Coxon F.P., Hocking L.J., Helfrich M.H. Bone remodelling at a glance. Journal of Cell Science. 2011;124(7):991–998. doi: 10.1242/jcs.063032
  28. Koester K.J., Ager J.W. III, Ritchie R.O. The true toughness of human cortical bone measured with realistically short cracks. Nat. Mater. 2008;7:672−677. doi: 10.1038/nmat2221
  29. Weiner S., Price P.A. Disaggregation of bone into crystals. Calcif. Tissue Int. 1986;39:365−375. doi: 10.1007/BF02555173
  30. Kanzaki N., Onuma K., Ito A., Teraoka K., Tateishi T., Tsutsumi S. Direct growth rate measurement of hydroxyapatite single crystal by moire phase shift interferometry. J. Phys. Chem. B. 1998;102:6471−6476. doi: 10.1021/jp981512r
  31. Hughes J.M., Cameron M., Crowley K.D. Structural variations in natural F, OH, and Cl apatites. American Mineralogist. 1989;74:870–876. http://rruff.geo.arizona.edu/AMS/result.php (accessed: 07.12.2023).
  32. Tite T., Popa A.-C., Balescu L.M., Bogdan I.M., Pasuk I., Ferreira J.M.F., Stan G.E. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. Materials. 2018;11. Article No. 2081. doi: 10.3390/ma11112081
  33. Khanal S.P., Mahfuz H., Rondinone A.J., Leventouri T. Improvement of the fracture toughness of hydroxyapatite (HAp) by incorporation of carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and nylon. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;60:204–210. doi: 10.1016/j.msec.2015.11.030
  34. Uysal I., Severcan F., Tezcaner A., Evis Z. Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite. Prog. Nat. Sci. 2014;24:340–349. doi: 10.1016/j.pnsc.2014.06.004
  35. Chaikina M.V., Bulina N.V., Prosanov I.Yu., Ishchenko A.V. Anionic substitutions in the mechanochemical synthesis of hydroxyapatite. Chemistry for Sustainable Development. 2019;27:310-317. doi: 10.15372/CSD2019144
  36. Bigi A., Foresti E., Gregorini R., Ripamonti A., Roveri N., Shah J. The role of magnesium on the structure of biological apatites. Calcif. Tissue Int. 1992;50:439–444. doi: 10.1007/BF00296775
  37. Ren F., Leng Y., Xin R., Ge X. Synthesis, Characterization and Ab Initio Simulation of Magnesium-Substituted Hydroxyapatite. Acta Biomater. 2010;6:2787–2796. doi: 10.1016/j.actbio.2009.12.044
  38. Mróz W., Budner B., Syroka R., Niedzielski K., Golański G., Slósarczyk A., Schwarze D., Douglas. T.E. In vivo implantation of porous titanium, alloy implants coated with magnesium‐doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser depostion. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2015;103(1):151–158. doi: 10.1002/jbm.b.33170
  39. Mróz W., Bombalska A., Burdyńska S., Jedyński M., Prokopiuk A., Budner B., Ślósarczyk A., Zima A., Menaszek E., Ścisłowska-Czarnecka A. et al. Structural studies of magnesium doped hydroxyapatite coatings after osteoblast culture. J. Mol. Struct. 2010;977:145–152. doi: 10.1016/j.molstruc.2010.05.025
  40. Silva L.M., Tavares D.S., Santos E.A. Isolating the Effects of Mg2+, Mn2+ and Sr2+ Ions on Osteoblast Behavior from those Caused by Hydroxyapatite Transformation. Materials Research. 2020;23. No. 2. Article No. e20200083. doi: 10.1590/1980-5373-mr-2020-0083
  41. Fadeeva I., Kalita V., Komlev D., Radiuk A., Fomin A., Davidova G., Fursova N., Murzakhanov F., Gafurov M., Fosca M., et al. In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma. Materials. 2020;13. Article No. 4411. doi: 10.3390/ma13194411
  42. Fadeeva I.V., Fomin A.S., Barinov S.M., Davydova G.A., Selezneva I.I., Preobrazhenskii I.I., Rusakov M.K., Fomina A.A., Volchenkova V.A. Synthesis and Properties of Manganese-Containing Calcium Phosphate Materials. Inorganic Materials. 2020;56(7):700–706. doi: 10.1134/S0020168520070055
  43. Liu H., Cui X., Lu X., Liu X., Zhang L., Chan T.-S. Mechanism of Mn incorporation into hydroxyapatite: Insights from SR-XRD, Raman, XAS, and DFT calculation. Chem. Geol. 2021;579. Article No. 120354. doi: 10.1016/j.chemgeo.2021.120354
  44. Lala S., Maity T., Singha M., Biswas K., Pradhan S. Effect of doping (Mg, Mn, Zn) on the microstructure and mechanical properties of spark plasma sintered hydroxyapatites synthesized by mechanical alloying. Ceram. Int. 2017;43:2389–2397. doi: 10.1016/j.ceramint.2016.11.027
  45. Fadeeva I.V., Bakunova N.V., Komlev V.S., Fomin A.S., Barinov S.M., Medvecký L., Gurin A.N. Zinc- And Silver-Substituted Hydroxyapatite: Synthesis And Properties. Doklady Chemistry. 2012;442(2):63-65. doi: 10.1134/S0012500812020097
  46. Chaikina M.V., Bulina N.V., Prosanov I.Y., Vinokurova O.B., Ishchenko A.V. Structure formation of zinc-substituted hydroxyapatite during mechanochemical synthesis. Inorganic Materials. 2020;56(4):402–408. doi: 10.1134/S0020168520040044
  47. Bulina N.V., Vinokurova O.V., Eremina N.V., Prosanov I.Y., Khusnutdinov V.R., Chaikina M.V. Features of solid-phase mechanochemical synthesis of hydroxyapatite doped by copper and zinc ions. Journal of Solid State Chemistry. 2021;296:121973. doi: 10.1016/j.jssc.2021.121973
  48. Chaikina M.V., Bulina N.V., Prosanov I.Yu., Vinokurova O.V., Ischenko A.V. Structure formation of zinc-substituted hydroxyapatite during mechanochemical synthesis. Inorg. Mater. 2020;56(4):402–408. doi: 10.1134/S0020168520040044
  49. Bulina N.V., Chaikina M.V., Andreev A.S., Lapina O.B., Ishchenko A.V., Prosanov I.Yu., Gerasimov K.B., Solovyov L.A. Mechanochemical Synthesis of SiO44–-Substituted Hydroxyapatite, Part II – Reaction Mechanism, Structure, and Substitution Limit. Eur. J. Inorg. Chem. 2014;2014(28):4810–4825. doi: 10.1002/ejic.201402246
  50. Bulina N.V., Chaikina M.V., Prosanov I.Y. Mechanochemical Synthesis of Sr-Substituted Hydroxyapatite. Inorg. Mater. 2018;54:820–825. doi: 10.1134/S0020168518080034
  51. Bulina N.V., Makarova S.V., Prosanov I.Y., Vinokurova O.B., Lyakhov N.Z. Structure and thermal stability of fluorhydroxyapatite and fluorapatite obtained by mechanochemical method. J. Solid State Chem. 2020;282. Article No. 121076. doi: 10.1016/j.jssc.2019.121076
  52. Bulina N.V., Makarova S.V., Baev S.G., Matvienko A.A., Gerasimov K.B., Logutenko O.A., Bystrov V.S. A Study of Thermal Stability of Hydroxyapatite. Minerals. 2021;11. Article No. 1310. doi: 10.3390/min11121310
  53. Aryal S., Matsunaga K., Ching W.Y. Ab initio simulation of elastic and mechanical properties of Zn- and Mg-doped hydroxyapatite (HAP). J. Mech. Behav. Biomed. Mater. 2015;47:135–146. doi: 10.1016/j.jmbbm.2015.03.018
  54. Matsunaga K., Kuwabara A. First-principles study of vacancy formation in hydroxyapatite. Phys. Rev. B. 2007;75. Article No. 014102. doi: 10.1103/PhysRevB.75.014102
  55. Slepko A., Demkov A.A. First-principles study of the biomineral hydroxyapatite. Phys. Rev. B Condens. Matter Mater. Phys. 2011;84. Article No. 134108. doi: 10.1103/PhysRevB.84.134108
  56. Sadetskaya A.V., Bobrysheva N.P., Osmolowsky M.G., Osmolovskaya O.M., Voznesenskiy M.A. Correlative experimental and theoretical characterization of transition metal doped hydroxyapatite nanoparticles fabricated by hydrothermal method. Mater. Charact. 2021;173. Article No. 110911. doi: 10.1016/j.matchar.2021.110911
  57. Bystrov V.S., Coutinho J., Bystrova A.V., Dekhtyar Y.D., Pullar R.C., Poronin A., Palcevskis E., Dindune A., Alkan B., Durucan C. Computational study of the hydroxyapatite structures, properties and defects. J. Phys. D Appl. Phys. 2015;48:195302. doi: 10.1088/0022-3727/48/19/195302
  58. Bystrov V., Paramonova E., Avakyan L., Coutinho J., Bulina N. Simulation and Computer Study of Structures and Physical Properties of Hydroxyapatite with Various Defects. Nanomaterials. 2021;11. Article No. 2752. doi: 10.3390/nano11102752
  59. Avakyan L.A., Paramonova E.V., Coutinho J., Öberg S., Bystrov V.S., Bugaev L.A. Optoelectronics and defect levels in hydroxyapatite by first-principles. J. Chem. Phys. 2018;148. Article No 154706. doi: 10.1063/1.5025329
  60. Bystrov V.S., Avakyan L.A., Paramonova E.V., Coutinho J. Sub-Band Gap Absorption Mechanisms Involving Oxygen Vacancies in Hydroxyapatite. J. Chem. Phys. 2019. V. 123. doi: 10.1021/acs.jpcc.8b11350
  61. Bystrov V.S., Paramonova E.V., Avakyan L.A., Eremina N.V., Makarova S.V., Bulina N.V. Effect of Magnesium Substitution on Structural Features and Properties of Hydroxyapatite. Materials. 2023;16. Article No. 5945. doi: 10.3390/ma16175945
  62. Bystrov V.S., Paramonova E.V., Bystrova A.V., Avakyan L.A., Makarova S.V., Isaev D.D., Bulina N.V. Influence of the substitutions of Ca atoms on Sr, Mg, Mn, Fe atoms in the Hydroxyapatite structure and electric field changes on its physical properties important for biomedicine. In: VII Congress of Russian Biophysicists: collection of abstracts. Krasnodar, Russia: Kuban State Technological University, 2023:278-279. doi: 10.26297/SbR6.2023.001
  63. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865
  64. Heyd J., Scuseria G.E., Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003;118:8207–8215. doi: 10.1063/1.1564060
  65. Krukau A.V., Vydrov O.A., Izmaylov A.F., Scuseria G.E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006;125. Article No. 224106. doi: 10.1063/1.2404663
  66. Quantum ESPRESSO. https://www.quantum-espresso.org/ (accessed: 07.12.2023).
  67. Schlipf M., Gygi F. Optimization algorithm for the generation of ONCV pseudopotentials. Computer Phys. Commun. 2015;196. 36–44. doi: 10.1016/j.cpc.2015.05.011
  68. Hamann D.R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. 2013. V. B88. 085117. doi: 10.1103/PhysRevB.88.085117
  69. Nocedal J., Wright S.J. Numerical Optimization. New York: Springer, 2006.
  70. Avriel M. Nonlinear Programming: Analysis and Methods. Dover Publishing, 2003.
  71. Filippov S.V., Polozov R.V., Sivozhelezov V.S. Hypsometric mapping based visualization of (bio)macromolecular 3D structures: KIAM Preprint. Moscow, 2019. No. 61 (in Russ.). doi: 10.20948/prepr-2019-61
Table of Contents Original Article
Math. Biol. Bioinf.
2023;18(2):580-601
doi: 10.17537/2023.18.580
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024