Русская версия English version   
Том 19   Выпуск 1   Год 2024
Воропаева О.Ф.1, Цгоев Ч.А.1,2

Численное моделирование инфаркта миокарда при многососудистом поражении коронарного русла. I. Анализ некоторых модельных сценариев

Математическая биология и биоинформатика. 2024;19(1):183-211.

doi: 10.17537/2024.19.183.

Список литературы

  1. Russian Journal of Cardiology. 2013;2s1:3–16 (in Russ.).
  2. Thygesen K., Alpert J.S., Jaffe A.S., Chaitman B.R., Bax J.J., Morrow D.A., White H.D., et al. Fourth universal definition of myocardial infarction. Circulation. 2018;138(20):e618–e651. doi: 10.1161/CIR.0000000000000617
  3. Kunita Y., Nakajima K., Nakata T., Kudo T., Kinuya S. Prediction of multivessel coronary artery disease and candidates for stress-only imaging using multivariable models with myocardial perfusion imaging. Annals of Nuclear Medicine. 2022;36:674–683. doi: 10.1007/s12149-022-01751-7
  4. Stähli B.E., Varbella F., Schwarz B., Nordbeck P., Felix S.B., Lang I.M., Toma A., Moccetti M., Valina C., Vercellino M., et al. Rationale and design of the MULTISTARS AMI Trial: A randomized comparison of immediate versus staged complete revascularization in patients with ST-segment elevation myocardial infarction and multivessel disease. American Heart Journal. 2020;228:98–108. doi: 10.1016/j.ahj.2020.07.016
  5. Thune J.J., Signorovitch J.E., Kober L., McMurray J.J., Swedberg K., Rouleau J., Maggioni A., Velazquez E., Califf R., Pfeffer M.A., Solomon S.D. Predictors and prognostic impact of recurrent myocardial infarction in patients with left ventricular dysfunction, heart failure, or both following a first myocardial infarction. Eur. J. Heart Fail. 2011;13:148–153. doi: 10.1093/eurjhf/hfq194
  6. Al-Zaiti S.S., Martin-Gill C., Zègre-Hemsey J.K., Bouzid Z., Faramand Z., Alrawashdeh M.O., Gregg R.E., Helman S., Riek N.T., Kraevsky-Phillips K., et al. Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction. Nature Medicine. 2023;29:1804–1813. doi: 10.1038/s41591-023-02396-3
  7. Lee S.H., Jeong M.H., Ahn J.H., Hyun D.Y, Cho K.H., Kim M.C., Sim D.S., Hong Y.J., Kim J.H., Ahn Y., Hwang J.Y., Kim W., Park J.S., Yoon C.-H., Hur S.H., Lee S.R., Cha K.S., and on behalf of the KAMIR (Korea Acute Myocardial Infarction Registry)-NIH Investigators. Predictors of recurrent acute myocardial infarction despite successful percutaneous coronary intervention. Korean J. Intern. Med. 2022;37(4):777–785. doi: 10.3904/kjim.2021.427
  8. Eerlikh A.D. Relationship Between Degree of Coronary Vascular Bed Involvement and Characteristics of Stenting With Short-Term and Long-Term Outcomes in Patients With Acute Coronary Syndrome (Data of the RECORD-3 Registry). Kardiologiia. 2018;58(5):5–12 (in Russ.). doi: 10.18087/cardio.2018.5.10109
  9. Baron T., Hambraeus K., Sundström J., Erlinge D., Jernberg T., Lindahl B., TOTAL-AMI study group. Type 2 myocardial infarction in clinical practice. Heart. 2015;101:101–106. doi: 10.1136/heartjnl-2014-306093
  10. Troidl C., Mӧllmann H., Nef H., Masseli F., Voss S., Szardien S., Willmer M., Rolf A., Rixe J., Troidl K., Kostin S., Hamm C., Elsässer A. Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J. Cell. Mol. Med. 2009;13(9B):3485–3496. doi: 10.1111/j.1582-4934.2009.00707.x
  11. Frantz S., Nahrendorf M. Cardiac macrophages and their role in ischaemic heart disease. Cardiovascular research. 2014;102(2):240–248. doi: 10.1093/cvr/cvu025
  12. Saxena A., Russo I., Frangogiannis N.G. Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Translat. Res. 2016;167(1):52–166. doi: 10.1016/j.trsl.2015.07.002
  13. Stafeev I.S., Menshikov M.Y., Tkachuk V.A., Parfyonova Ye.V. The Role of Macrophages in Repair of Injured Myocardium and Perspectives of Metabolic Reprogramming of Immune Cells for Myocardial Post-Infarction Recovery. Kardiologiia. 2017;57(12):53–59. doi: 10.18087/cardio.2017.12.10067
  14. Chen M., Li X., Wang S., Yu L., Tang J., Zhou S. The Role of Cardiac Macrophage and Cytokines on Ventricular Arrhythmias. Front. Physiol. 2020;11. Article No. 1113. doi: 10.3389/fphys.2020.01113
  15. Lafuse W.P., Wozniak D.J., Rajaram M.V.S. Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair. Cells. 2020;10(51). doi: 10.3390/cells10010051
  16. Kim Y., Nurakhayev S., Nurkesh A., Zharkinbekov Z., Saparov A. Macrophage polarization in cardiac tissue repair following myocardial infarction. Int. J. Molecular Sciences. 2021;22. Article No. 2715. doi: 10.3390/ijms22052715
  17. Wang Y., Hou M., Duan S., Zhao Z., Wu X., Chen Y., Yin L. Macrophage-targeting gene silencing orchestrates myocardial microenvironment remodeling toward the anti-inflammatory treatment of ischemia-reperfusion (IR) injury. Bioactive Materials. 2022;17:320–333. doi: 10.1016/j.bioactmat.2022.01.026
  18. Fontaine M.A.C., Jin H., Gagliardi M., Rousch M., Wijnands E., Stoll M., Li X., Schurgers L., Reutelingsperger C., Schalkwijk C., et al. Blood Milieu in Acute Myocardial Infarction Reprograms Human Macrophages for Trauma Repair. Advanced Science. 2023;10. Article No. 2203053. doi: 10.1002/advs.202203053
  19. Frangogiannis N.G. Regulation of the inflammatory response in cardiac repair. Circulation Research. 2012;110:159–173. doi: 10.1161/CIRCRESAHA.111.243162
  20. Tsgoev C.A., Voropaeva O.F., Shokin Y.I. Mathematical modelling of acute phase of myocardial infarction. Russian Journal of Numerical Analysis and Mathematical Modelling. 2020;35(2):111–126. doi: 10.1515/rnam-2020-0009
  21. Voropaeva O.F., Tsgoev C.A., Shokin Yu.I. Numerical simulation of the inflammatory phase of myocardial infarction. Journal of Applied Mechanics and Technical Physics. 2021;62(3):441–450. doi: 10.1134/S002189442103010X
  22. Voropaeva O.F., Tsgoev Ch.A. Numerical Modelling of Myocardial Infarction. I. Analysis of Spatiotemporal Aspects of the Local Inflammatory Response. Mathematical Biology and Bioinformatics. 2023;18(1):49–71. doi: 10.17537/2023.18.49
  23. Voropaeva O.F., Tsgoev Ch.A. Numerical modelling of myocardial infarction. II. Analysis of macrophage polarization mechanism as a therapeutic target. Mathematical Biology and Bioinformatics. 2023;18(2):367–404. doi: 10.17537/2023.18.367
  24. Chen J., Ceholski D.K., Liang L., Fish K., Hajjar R.J. Variability in coronary artery anatomy affects consistency of cardiac damage after myocardial infarction in mice. Am. J. Physiol. Heart Circ. Physiol. 2017;313:H275–H282. doi: 10.1152/ajpheart.00127.2017
  25. Martin T.P., MacDonald E.A., Elbassioni A.A.M., O'Toole D., Zaeri A.A.I., Nicklin S.A., Gray G.A., Loughrey C.M. Preclinical models of myocardial infarction: from mechanism to translation. British J. Pharmacol. 2022;179:770–791. doi: 10.1111/bph.15595
  26. Lindsey M.L., Bolli R., Canty J.M. Jr., Du X.J., Frangogiannis N.G., Frantz S.,Gourdie R.G., Holmes J.W., Jones S.P., Kloner R.A., Lefer D.J., Liao R., Murphy E., Ping P., Przyklenk K., Recchia F.A., Schwartz Longacre L., Ripplinger C.M., VanEyk J.E., Heusch G. Guidelines for experimental models of myocardial ischemia and infarction. Am. J. Physiol. Heart Circ. Physiol. 2018;314:H812–H838. doi: 10.1152/ajpheart.00335.2017
  27. Kolesova H., Bartos M., Hsieh W.C., Olejnickova V., Sedmera D. Novel approaches to study coronary vasculature development in mice. Developmental Dynamics. 2018;247:1018–1027. doi: 10.1002/dvdy.24637
  28. Entman M.L., Youker K., Shoji T., Kukielka G., Shappell S.B., Taylor A.A., Smith C.W. Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence. J. Clin. Invest. 1992;90:1335–1345. doi: 10.1172/JCI115999
  29. Voropaeva O.F., Tsgoev Ch.A. A numerical model of inflammation dynamics in the core of myocardial infarction. J. Appl. Industr. Math. 2019;13(2):372–383. doi: 10.1134/S1990478919020182
  30. Jin Y.-F., Han H.-C., Berger J., Dai Q., Lindsey M.L. Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling. BMC Systems Biology. 2011;5. Article No. 60. doi: 10.1186/1752-0509-5-60
  31. Malyshev I.Iu., Kruglov S.V., Bakhtina L.Iu., Malysheva E.V., Zubin M., Norkin M. Bulletin of Experimental Biology and Medicine. 2004;138(8):162–165 (in Russ.). doi: 10.1007/BF02694358
  32. Malyshev I.Yu. Phenomena and signaling mechanisms of macrophage reprogramming. Patologicheskaya Fiziologiya i Eksperimental'naya Terapiya (Pathological physiology and experimental therapy). 2015;59(2):99–111 (in Russ.).
  33. Fedorov A.A., Ermak N.A., Gerashchenko T.S., Topolnitskii E.B., Shefer N.A., Rodionov E.O., Stakheyeva M.N. Polarization of macrophages: mechanisms, markers and factors of induction. Siberian journal of oncology. 2022;21(4):124–136 (in Russ.). doi: 10.21294/1814-4861-2022-21-4-124-136
  34. Sica A., Erreni M., Allavena P., Porta C. Macrophage polarization in pathology. Cell Mol. Life Sci. 2015;72(21):4111–4126. doi: 10.1007/s00018-015-1995-y
  35. Hsu E.W., Xue R., Holmes A., Forder J.R. Delayed reduction of tissue water diffusion after myocardial ischemia. Am. J. Physiol. 1998;275:H697–H702. doi: 10.1152/ajpheart.1998.275.2.H697
  36. Lin P.-C., Kreutzer U., Jue T. Anisotropy and temperature dependence of myoglobin translational diffusion in myocardium: implication for oxygen transport and cellular architecture. Biophys. J. 2007;92:2608–2620. doi: 10.1529/biophysj.106.094458
  37. Anderson R.H., Ho S.Y., Redmann K., Sanchez-Quintana D., Lunkenheimer P.P. The anatomical arrangement of the myocardial cells making up the ventricular mass. Europ. J. Cardio-thoracic Surgery. 2005;28:517–525. doi: 10.1016/j.ejcts.2005.06.043
  38. Gouda Z.A., Elewa Y.H.A., Selim A.O. Histological architecture of cardiac myofibers composing the left ventricle of murine heart. J. Histology Histopathology. 2015;2. Article No. 2. doi: 10.7243/2055-091X-2-2
  39. Strijkers G.J., Bouts A., Blankesteijn W.M., Peeters T.H.J.M., Vilanova A., van Prooijen M.C., Sanders H.M.H.F., Heijman E., Nicolay K. Diffusion tensor imaging of left ventricular remodeling in response to myocardial infarction in the mouse. NMR Biomedicine. 2009;22:182–190. doi: 10.1002/nbm.1299
  40. Wang Y., Yang T., Ma Y., Halade G.V., Zhang J., Lindsey M.L., Jin Y.F. Mathematical modeling and stability analysis of macrophage activation in left ventricular remodeling post-myocardial infarction. BMC Genomics. 2012;13. Article No. S21. doi: 10.1186/1471-2164-13-S6-S21
  41. Saxena A., Bujak M., Frunza O., Dobaczewski M., Gonzalez-Quesada C., Lu B., Gerard C., Frangogiannis N.G. CXCR3-independent actions of the CXC chemokine CXCL10 in the infarctedmyocardium and in isolated cardiac fibroblasts are mediated through proteoglycans. Cardiovascular Research. 2014;103:217–227. doi: 10.1093/cvr/cvu138
  42. Bujak M., Dobaczewski M., Chatila K., Mendoza L.H., Li N., Reddy A., Frangogiannis N.G. Interleukin-1 Receptor Type I Signaling Critically Regulates Infarct Healing and Cardiac Remodeling. Am. J. Pathol. 2008;173:57–67. doi: 10.2353/ajpath.2008.070974
  43. van Zuylen V.L., den Haan M.C., Roelofs H., Fibbe W.E., Schalij M.J., Atsma D.E. Myocardial infarction models in NOD/Scid mice for cell therapy research: permanent ischemia vs ischemia–reperfusion. SpringerPlus. 2015;4. Article No. 336. doi: 10.1186/s40064-015-1128-y
  44. Yanenko N.N. The Method of Fractional Steps, the Solution of Problems of Mathematical Physics in Several Variables. Berlin: Springer-Verlag, 1971.
  45. Jung M., Ma Y., Iyer R.P., DeLeon-Pennell K.Y., Yabluchanskiy A., Garrett M.R., Lindsey M.L. IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic. Res. Cardiol. 2017;112(3). Article No. 33. doi: 10.1007/s00395-017-0622-5
  46. Lobanov A.I., Starozhilova T.K. Nestatsionarnye struktury v modeli svertyvaniia krovi (Non-stationary structures in the blood coagulation model). Site of Sergei P. Kurdyumov (in Russ.). https://spkurdyumov.ru/biology/nestacionarnye-struktury-v-modeli-svertyvaniya-krovi/ (accessed 14 May 2024).
  47. Lobanov A.I., Pashkov R.A., Petrov I.B., Polezhaev A.A. Spatial patterns formed by chemotactic bacteria Escherichia coli. Matem. Mod. 2002;14(10):17–26 (in Russ.).
  48. Kolmogorov A.N., Petrovsky I.G., Piskunov N.S. Investigation of the Equation of Diffusion Combined with Increasing of the Substance and Its Application to a Biology Problem. Bulletin of Moscow State University Series A: Mathematics and Mechanics. 1937;1:1–25.
  49. Turing A.M. The chemical basis of morphogenesis. Phyl. Trans. Roy. Soc. 1952;237:37–72. doi: 10.1098/rstb.1952.0012
  50. Murray J.D. Mathematical Biology. Berlin: Springer-Verlag, 1989. 760 p. doi: 10.1007/978-3-662-08539-4
  51. Akhromeeva T.S., Kurdjumov S.P., Malinetskii G.G., Samarskii A.A. Nonstationary Dissipative Structures and Diffusion-Induced Chaos in Nonlinear Media. Physics Reports. 1989;176(5-6):189–372. doi: 10.1016/0370-1573(89)90001-X
  52. Ivanitskii G.R., Medvinskii A.B., Tsyganov M.A. From disorder to order as applied to the movement of micro-organisms. Sov. Phys. Usp. 1991;34(4):289–316. doi: 10.1070/PU1991v034n04ABEH002362
  53. Vanag V.K. Waves and patterns in reaction-diffusion systems. Belousov-Zhabotinsky reaction in water-in-oil microemulsions. Phys. Usp. 2004;47:923–941. doi: 10.1070/PU2004v047n09ABEH001742
  54. Saxena A., Russo I., Frangogiannis N.G. Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Transl. Res. 2016;167(1):152–166. doi: 10.1016/j.trsl.2015.07.002
  55. Saxena A., Chen W., Su Y., Rai V., Uche O.U., N. Li, Frangogiannis N.G. IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium. J. Immunol. 2013;191(9):4838–4848. doi: 10.4049/jimmunol.1300725
  56. Matter M.A., Paneni F., Libby P., Frantz S., Stähli B.E., Templin C., Mengozzi A., Wang Y.-J., Kündig T.M., Räber L., Ruschitzka F., Matter C.M. Inflammation in acute myocardial infarction: the good, the bad and the ugly. European Heart Journal. 2024;45(2):89–103. doi: 10.1093/eurheartj/ehad486
  57. Maidana D., Arroyo-Álvarez A., Arenas-Loriente A., Barreres-Martín G., Muñoz-Alfonso C., Berroteran D.B., Claramunt F.E., del Burgo R.B., Cepas-Guillén P., Garcia-Blas S., et al. Inflammation as a New Therapeutic Target among Older Patients with Ischemic Heart Disease. J. Clinical Medicine. 2024;13. Article No. 363. doi: 10.3390/jcm13020363
  58. Margarida V., de Jager S.C.A., Sluijter J.P.G. Targeting Inflammation after Myocardial Infarction: A Therapeutic Opportunity for Extracellular Vesicles? Int. J. Molecular Sciences. 2021;22. Article No. 7831. doi: 10.3390/ijms22157831
  59. Zymek P., Nah D.-Y., Bujak M., Ren G., Koerting A., Leucker T., Huebener P., Taffet G., Entman M., Frangogiannis N.G. Interleukin-10 is not a critical regulator of infarct healing and left ventricular remodeling. Cardiovasc. Res. 2007;74(2):313–322. doi: 10.1016/j.cardiores.2006.11.028
  60. Somasuntharam I., Yehl K., Carroll S.L., Maxwell J.T., Martinez M.D., Che P.L., Brown M.E., Salaita K., Davis M.E. Knockdown of TNF-α by DNAzyme gold nanoparticles as an anti-inflammatory therapy for myocardial infarction. Biomaterials. 2016;83:12–22. doi: 10.1016/j.biomaterials.2015.12.022
  61. Lugrin J., Parapanov R., Milano G.R., Cavin S., Debonneville A., Krueger T., Liaudet L. The systemic deletion of interleukin-1α reduces myocardial inflammation and attenuates ventricular remodeling in murine myocardial infarction. Scientific Reports. 2023;13. Article No. 4006. doi: 10.1038/s41598-023-30662-4
  62. Gao C., Liu Y., Yu Q., Yang Q., Li B., Sun L., Yan W., Cai X., Gao E., Xiong L., Wang H., Tao L. TNF-𝛼 antagonism ameliorates myocardial ischemia-reperfusion injury in mice by upregulating adiponectin. Am. J. Physiol. Heart Circ. Physiol. 2015;308(12):H1583–H1591. doi: 10.1152/ajpheart.00346.2014
Содержание Оригинальная статья
Мат. биол. и биоинф.
2024;19(1):183-211
doi: 10.17537/2024.19.183
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы

 

  Copyright ИМПБ РАН © 2005-2024