Russian version English version
Volume 8   Issue 2   Year 2013
Shigaev A.S., Ponomarev O.A., Lakhno V.D.

Theoretical and Experimental Investigations of DNA Open States

Mathematical Biology & Bioinformatics. 2013;8(2):553-664.

doi: 10.17537/2013.8.553.


  1. Alhambra C, Luque FJ, Gago F, Orozco M. Ab Initio Study of Stacking Interactions in A- and B-DNA. The Journal of Physical Chemistry B. 1997;101:3846-3853.
  2. Hobza P, Sponer J. Structure, Energetics, and Dynamics of the Nucleic Acid Base Pairs: Nonempirical Ab Initio Calculations. Chemical Reviews. 1999;99:3247-3276.
  3. Sponer J, Leszczynski J, Hobza P. Nature of Nucleic Acid-Base Stacking: Nonempirical ab Initio and Empirical Potential Characterization of 10 Stacked Base Dimers. Comparison of Stacked and H-Bonded Base Pairs. The Journal of Physical Chemistry. 1996;100:5590-5596.
  4. Tewari AK, Dubey R. Emerging trends in molecular recognition: utility of weak aromatic interactions. Bioorganic & Medicinal Chemistry. 2008;16:126-143.
  5. Watson DG, Sutor DJ, Tollin P. The crystal structure of deoxyadenosine monohydrate. Acta Crystallographica. 1965;19:111-124.
  6. Kraut J, Jensen LH. Refinement of the crystal structure of adenosine-5'-phosphate. Acta Crystallographica. 1963;16:79-88.
  7. Gago F. Stacking Interactions and Intercalative DNA Binding. Methods. 1998;14:277-292.
  8. Sponer J, Leszczynski J, Hobza P. Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases. Biopolymers. 2001/2002;61:3-31.
  9. Cerny J, Hobza P. Non-covalent interactions in biomacromolecules. Physical Chemistry Chemical Physics. 2007;9:5291-5303.
  10. Nelson DL, Cox MM. Lehninger Principles of Biochemistry. New York: W.H. Freeman and Company; 2008.
  11. Benham CJ, Mielke SP. DNA mechanics. Annual Review of Biomedical Engineering. 2005;7:21-53.
  12. Vedenov AA, Dykhne AM, Frank-Kamenetskii MD. The Helix-Coil Transition in DNA. Sov. Phys. Usp. 1972;14:715-736.
  13. Peyrard M. Nonlinear dynamics and statistical physics of DNA. Nonlinearity. 2004;17:R1-R40.
  14. Cloutier T, Widom J. Spontaneous Sharp Bending of Double-Stranded DNA. Molecular Cell. 2004;14:355-362.
  15. Yan J, Marko JF. Localized Single-Stranded Bubble Mechanism for Cyclization of Short Double Helix DNA. Physical Review Letters. 2004;93. Article No. 108108.
  16. Cloutier TE, Widom J. DNA twisting flexibility and the formation of sharply looped protein-DNA complexes. PNAS USA. 2005;102:3645-3650.
  17. Du Q, Smith C, Shiffeldrim N, Vologodskaia M, Vologodskii A. Cyclization of short DNA fragments and bending fluctuations of the double helix. PNAS USA. 2005;102:5397-5402.
  18. Feklistov A, Darst SA. Structural basis for promoter-10 element recognition by the bacterial RNA polymerase sigma subunit. Cell. 2011;147:1257-1269.
  19. Liu X, Bushnell DA, Kornberg RD. Lock and key to transcription: sigma-DNA interaction. Cell. 2011;147:1218-1219.
  20. Eley DD, Spivey DI. Semiconductivity of organic substances. Part 9. Nucleic acid in the dry state. Transactions of the Faraday Society. 1962;58:411-415.
  21. Armitage B. Photocleavage of Nucleic Acids. Chemical Reviews. 1998;98:1171-1200.
  22. Kino K, Sugiyama H. Possible cause of G-C?C-G transversion mutation by guanine oxidation product, imidazolone. Chemistry & Biology. 2001;8:369-378.
  23. Wagenknecht H-A. Electron transfer processes in DNA: mechanisms, biological relevance and applications in DNA analytics. Natural Product Reports. 2006;23:973-1006.
  24. Kawanishi S, Hiraku Y, Oikawa S. Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutation Research. 2001;488:65-76.
  25. Genereux JC, Boal AK, Barton JK. DNA-mediated Charge Transport in Redox Sensing and Signaling. Journal of American Chemical Society. 2010;132:891-905.
  26. Sontz PA, Mui TP, Fuss JO, Tainer JA, Barton JK. DNA charge transport as a first step in coordinating the detection of lesions by repair proteins. PNAS USA. 2012;109:1856-1861.
  27. Sontz PA, Muren NB, Barton JK. DNA Charge Transport for Sensing and Signaling. Accounts of Chemical Research. 2012;45:1792-1800.
  28. Folta-Stogniew E, Russu IM. Sequence dependence of base-pair opening in a DNA dodecamer containing the CACA/GTGT sequence motif. Biochemistry. 1994;33:11016-11024.
  29. Choi CH, Kalosakas G, Rasmussen KO, Hiromura M, Bishop AR, Usheva A. DNA dynamically directs its own transcription initiation. Nucleic Acids Research. 2004;32:1584-1590.
  30. Kalosakas G, Rasmussen KO, Bishop AR, Choi CH, Usheva A. Sequence-specific thermal fluctuations identify start sites for DNA transcription. Europhysics Letters. 2004;68:127-133.
  31. Lakhno VD. DNA Nanobioelectronics. International Journal of Quantum Chemistry. 2008;108:1970-1981.
  32. Triberis GP, Dimakogianni M. DNA in the material world: electrical properties and nano-applications. Recent Patents on Nanotechnology. 2009;3:135-153.
  33. Hatfield GW, Benham CJ. DNA topology-mediated control of global gene expression in Escherichia coli. Annual Review of Genetics. 2002;36:175-203.
  34. Mielke SP, Gronbech-Jensen NG, Krishnan VV, Fink WH, Benham CJ. Brownian dynamics simulations of sequence-dependent duplex denaturation in dynamically superhelical DNA. The Journal of chemical physics. 2005;123. Article No. 124911.
  35. Zhabinskaya D, Benham CJ. Theoretical Analysis of the Stress Induced B-Z Transition in Superhelical DNA. PLoS Computational Biology. 2011;7. Article No. e1001051.
  36. Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171:737-738.
  37. Zimm BH, Kallenbach NR. Selected Aspects of the Physical Chemistry of Polynucleotides and Nucleic Acids. Annual Review of Physical Chemistry. 1962;13:171-194.
  38. Marmur J, Rownd R, Schildkraut CL. Denaturation and Renaturation of Deoxyribonucleic Acids. Progress in Nucleic Acid Research and Molecular Biology. 1963;1:231-300.
  39. Felsenfeld G, Miles HT. The Physical and Chemical Properties of Nucleic Acids. Annual Review of Biochemistry. 1967;36:407-448.
  40. Thomas R. Recherches sur la d'enaturation des acides desoxyribonucleiques. Biochimica et Biophysica Acta. 1954;14:231-240.
  41. Rice SA, Doty P. The Thermal Denaturation of Deoxyribose Nucleic Acid. Journal of American Chemical Society. 1957;79:3937-3947.
  42. Zamenhof S, Alexander HE, Leidy G. Studies on the chemistry of the transforming activity. I. Resistance to physical and and chemical agents. The Journal of Experimental Medicine. 1953;98:373-397.
  43. Bloomfield VA, Crothers DM, Tinoco I Jr. Physical Chemistry of Nucleic acids. New York: Harper & Row; 1974. 133 p.
  44. Tinoco I Jr. Hypochromism in Polynucleotides. Journal of American Chemical Society. 1960;82:4785-4790. Erratum in: Journal of American Chemical Society. 1961;84:5047.
  45. Rhodes W. Hypochromism and Other Spectral Properties of Helical Polynucleotides. Journal of American Chemical Society. 1961;83:3609-3617.
  46. De Voe H. Optical Properties of Molecular Aggregates. I. Classical Model of Electronic Absorption and Refraction. The Journal of chemical physics. 1964;41(2):393-400.
  47. Rhodes W, Chase M. Generalized Susceptibility Theory I. Theories of Hypochromism. Reviews of Modern Physics. 1967;39:348-361.
  48. Bullough RK. Complex Refractive Index and a Two-Band Model in the Theory of Hypochromism. The Journal of chemical physics. 1968;48:3712-3722.
  49. De Voe H. The theory of hypochromism of biopolymers: calculated spectra for DNA. Annals of the New York Academy of Sciences. 1969;158:298-307.
  50. Brown E, Pysh ES. Base Composition Dependence of DNA Hypochromism. The Journal of Chemical Physics. 1972;56:31-37.
  51. Volkov SN. Some aspects of the DNA hypochromic effect theory. International Journal of Quantum Chemistry. 1979;16(1):119-132.
  52. Russell AP, Holleman DS. The thermal denaturation of DNA: average length and composition of denatured areas. Nucleic Acids Research. 1974;1:959-978.
  53. Wartell RM, Benight AS. Thermal denaturation of DNA molecules: A comparison of theory with experiment. Physics Reports. 1985;126:67-107.
  54. Montrichok A, Gruner G, Zocchi G. Trapping intermediates in the melting transition of DNA oligomers. Europhysics Letters. 2003;62:452-458.
  55. Zeng Y, Montrichok A, Zocchi G. Length and statistical weight of bubbles in DNA melting. Physical Review Letters. 2003;91. Article No. 148101.
  56. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology. 1962;5(1):109-118.
  57. Nishigaki K, Husimi Y, Masuda M, Kaneko K, Tanaka T. Strand dissociation and cooperative melting of double-stranded DNAs detected by denaturant gradient gel electrophoresis. The Journal of Biochemistry. 1984;95:627-635.
  58. Fodde R, Losekoot M. Mutation detection by denaturing gradient gel electrophoresis (DGGE). Human mutation. 1994;3:83-94.
  59. Wada A., Yabuki S., Husimi Y. Fine structure in the thermal denaturation of DNA: high temperature-resolution spectrophotometric studies. CRC critical reviews in biochemistry. 1980;9:87-144.
  60. Lazurkin YuS, Frank-Kamenetskii MD, Trifonov EN. Melting of DNA: its study and application as a research method. Biopolymers. 1970;9:1253-1306.
  61. Gotoh O. Prediction of melting profiles and local helix stability for sequenced DNA. Advances in Biophysics. 1983;16:1-52.
  62. Ivanov V, Zeng Y, Zocchi G. Statistical mechanics of base stacking and pairing in DNA melting. Physical Review E. 2004;70. Article No. 051907.
  63. Rice SA, Wada A. On a model of the Helix-coil Transition in Macromolecules. II. The Journal of Chemical Physics. 1958;29:233-243.
  64. Hill TL. Generalization of the One-Dimensional Ising Model Applicable to Helix Transitions in Nucleic Acids and Proteins. The Journal of Chemical Physics. 1959;30:383-387.
  65. Zimm BH. Theory of "Melting" of the Helical Form in Double Chains of the DNA Type. The Journal of Chemical Physics. 1959;33:1349-1356.
  66. Newell GF, Montroll EW. On the Theory of the Ising Model of Ferromagnetism. Reviews of Modern Physics. 1953;25:353-389.
  67. Magee WS Jr, Gibbs JH, Zimm BH. Theory of helix-coil transitions involving complementary poly- and oligo-nucleotides. I. The complete binding case. Biopolymers. 1963;1(2):133-143.
  68. Magee WS, Gibbs JH, Newell GF. Statistical Thermodynamic Theory for Helix—Coil Transitions Involving Poly- and Oligonucleotides. II. The Case of Partial Binding. The Journal of Chemical Physics. 1965;43:2115-2123.
  69. Schildkraut C, Lifson S. Dependence of the melting temperature of DNA on salt concentration. Biopolymers. 1965;3(2):195-208.
  70. Applequist J, Damle V. Theory of the Effects of Concentration and Chain Length on Helix-Coil Equilibria in Two-Stranded Nucleic Acids. The Journal of Chemical Physics. 1963;39:2719-2721.
  71. Poland D, Scheraga HR. Theory of helix-coil transitions in biopolymers: statistical mechanical theory of order-disorder transitions in biological macromolecules. New York: Acad. Press; 1970. 797 p.
  72. Crothers DM, Kallenbach NR. On the Helix-Coil Transition in Heterogeneous Polymers. The Journal of Chemical Physics. 1966;45:917-927.
  73. Lehman GW, McTague JP. Melting of DNA. The Journal of Chemical Physics. 1968;49:3170-3179.
  74. Brahms J, Maurizot JC, Michelson AM. Conformational stability of dinucleotides in solution. Journal of Molecular Biology. 1967;25:481-495.
  75. Davis RC, Tinoco I Jr. Temperature-dependent properties of dinucleoside phosphates. Biopolymers. 1968;6:223-242.
  76. Inman RB, ??ldwin RL. Helix- Random Coil Transitions in DNA Homopolymer Pairs. Journal of Molecular Biology. 1964;8:452-469.
  77. ?hamberlin MJ. Comparative properties of DNA, RNA, and hybrid homopolymer pairs. Federation Proceedings. 1965;24:1446-1457.
  78. Applequist J. True Phase Transitions in Macromolecules of the DNA Type. The Journal of Chemical Physics. 1966;45:3459-3461.
  79. Applequist J. Higher-Order Phase Transitions in Two-Stranded Macromolecules. The Journal of Chemical Physics. 1969;50:600-609.
  80. Landau LD, Lifschitz EM. Statistical Physics. Oxford: Pergamon Press; 1980. 387 p.
  81. M?rmin N, Wagner H. Absence of ferro-magnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Physical Review Letters. 1966;17:1133-1136.
  82. Kac M, Uhlenbeck GE, Hemmer PC. On the Van der Waals Theory of the Vapor-Liquid Equilibrium. I. Discussion of a One-Dimensional Model. Journal of Mathematical Physics. 1963;4:216-228.
  83. Poland D, Scheraga HA. Phase transitions in one dimension and the helix-coil transition in polyamino acids. The Journal of Chemical Physics. 1966;45:1456-1463.
  84. Poland D, Scheraga HA. Occurrence of a phase transition in nucleic acid models. The Journal of Chemical Physics. 1966;45:1464-1469.
  85. Flory PJ. Theory of Elastic Mechanisms in Fibrous Proteins. Journal of American Chemical Society. 1956;78:5222-5235.
  86. Fisher ME. Effect of Excluded Volume on Phase Transitions in Biopolymers. The Journal of Chemical Physics. 1966;45:1469-1473.
  87. Lifshits IM, Grosberg AYu, Khokhlov AR. The Structure of a Polymeric Globule Formed by Saturating Bonds. Soviet Physics - JETP (Zh. Eksp. Teor. Fiz) . 1976;71(4):1634-1643 (in Russ.).
  88. Lifshits IM, Grosberg AYu, Khokhlov AR. Volume interactions in the statistical physics of a polymer macromolecule. Sov. Phys. Usp. 1979;22:123-142.
  89. Kuznetsov DV, Khokhlov AR. On the Anomalous Coil-Globule Transition in a Heteropolymer Macromolecule. Vysokomolek.Soed. (Polymer Science USSR). 1981;23B(1):59-61 (in Russ.).
  90. Grosberg AY, Khokhlov AR. Coil-Globule Transitions in Polymer Systems. In: Problemy fiziki tverdogo tela: kurs lektsii (Problems in Solid-State Physics). Ed. Prokhorov AM. Moscow; 1984. P. 330-353 (in Russ.).
  91. Grosberg AYu, Khokhlov AR. Phase transitions in polymer and biopolymer systems. Sov. Phys. Usp. 1986;29:797-799.
  92. Grosberg AYu, Khokhlov AR. After-Action of the Ideas of I.M. Lifshitz in Polymer and Biopolymer Physics. Advances in Polymer Science. Berlin: Springer-Verlag; 2006;196:189-210.
  93. Takahashi M, Yoshikawa K, Vasilevskaya VV, Khokhlov AR. Discrete coil-globule transition of single duplex DNAs induced by polyamines. The Journal of Physical Chemistry B. 1997;101:9396-9401.
  94. Mukherji S, Bhattacharjee SM. Directed polymers with random interaction: An exactly solvable case. Physical Review E. 1993;48:3483-3496.
  95. Bhattacharjee SM, Mukherji S. Directed polymers with random interaction: Marginal relevance and novel criticality. Physical Review Letters. 1993;70:49-52.
  96. Causo MS, Coluzzi B, Grassberger P. Simple model for the DNA denaturation transition. Physical Review E. 2000;62:3958-3973.
  97. Kafri Y, Mukamel D, Peliti L. Why is the DNA Denaturation Transition First Order? Physical Review Letters. 2000;85:4988-4991.
  98. Duplantier B. Polymer Network of fixed topology: renormalization, exact critical exponent ? in two dimensions, and d = 4 - e. Physical Review Letters. 1986;57:941-944.
  99. Duplantier B. Statistical Mechanics of Polymer Networks. Journal of Statistical Physics. 1989;54:581-680.
  100. Schafer L, von Ferber C, Lehr U, Duplantier B. Renormalization of polymer networks and stars. Nuclear Physics B. 1992;374:473-495.
  101. Garel T, Monthus C, Orland H. A simple model for DNA denaturation. Europhysics Letters. 2001;55:132-138.
  102. Carlon E, Orlandini E, Stella AL. Roles of Stiffness and Excluded Volume in DNA Denaturation. Physical Review Letters. 2002;88. Article No. 198101.
  103. Baiesi M, Carlon E, Stella AL. Scaling in DNA unzipping models: Denaturated loops and end segments as branches of a block copolymer network. Physical Review E. 2002;66. Article No. 021804.
  104. Blossey R, Carlon E. Reparametrizing the loop entropy weights: Effect on DNA melting curves. Physical Review E. 2003;68. Article No. 061911.
  105. Baiesi M, Carlon E, Kafri Y, Mukamel D, Orlandini E, Stella AL. Interstrand distance distribution of DNA near melting. Physical Review E. 2003;67. Article No. 021911.
  106. Garel T, Monthus C. Numerical study of the disordered Poland-Scheraga model of DNA denaturation. Journal of Statistical Mechanics: Theory and Experiment. 2005;2005. Article No. P06004.
  107. Coluzzi B. Numerical study of a disordered model for DNA denaturation transition. Physical Review E. 2006;73. Article No. 011911.
  108. Coluzzi B, Yeramian E. Numerical evidence for relevance of disorder in a Poland-Scheraga DNA denaturation model with self-avoidance: scaling behavior of average quantities. The European Physical Journal B. 2007;56:349-365.
  109. Bar A, Kafri Y, Mukamel D. Loop Dynamics in DNA Denaturation. Physical Review Letters. 2007;98. Article No. 038103.
  110. Kunz H, Livi R, Suto A. The structure factor and dynamics of the helix-coil transition. Journal of Statistical Mechanics: Theory and Experiment. 2007;2007. Article No. P06004.
  111. Bandyopadhyay M, Gupta S, Segal D. DNA breathing dynamics: Analytic results for distribution functions of relevant Brownian functionals. Physical Review E. 2011;83. Article No. 031905.
  112. Inman RB. A denaturation map of the lambda phage DNA molecule determined by electron microscopy. Journal of Molecular Biology. 1966;18:464-476.
  113. Hirschman SZ, Gellert M, Falkow S, Felsenfeld G. Spectral analysis of the intramolecular heterogeneity of lambda DNA. Journal of Molecular Biology. 1967;28:469-477.
  114. Sanger F, Coulson AR, Hong GF, Hill DF, Petersen GB. Nucleotide sequence of bacteriophage lambda DNA. Journal of Molecular Biology. 1982;162:729-773.
  115. Falkow S, Cowie DB. Intramolecular heterogeneity of the deoxyribonucleic acid of temperate bacteriophages. Journal of Bacteriology. 1968;96:777-784.
  116. Hanlon S, Johnson RS, Wolf B, Chan A. Mixed Conformations of Deoxyribonucleic Acid in Chromatin: A Preliminary Report. PNAS USA. 1972;69:3263-3267.
  117. Tashiro T, Kurokawa M. A Contribution of Nonhistone Proteins to the Conformation of Chromatin. European Journal of Biochemistry. 1975;60:569-577.
  118. Darzynkiewicz Z, Traganos F, Sharpless T, Melamed MR. DNA denaturation in situ. Effect of divalent cations and alcohols. The Journal of Cell Biology. 1976;68:1-10.
  119. Defert N, Kitzist A, Kruht J, Brahms S, Brahms J. Effect of non-histone proteins on thermal transition of chromatin and of DNA. Nucleic Acids Research. 1977;4:2293-2306.
  120. Li H J, Brand B, Rotter A. Thermal denaturation of calf thymus DNA: existence of a GC-richer fraction. Nucleic Acids Research. 1974;1:257-265.
  121. Fonty G, Crouse EJ, Stutz E, Bernard G. The Mitochondrial Genome of Euglena gracilis. European Journal of Biochemistry. 1975;54:367-372.
  122. Schmitt JM, Bonhert H-J, Gordon KHJ, Herrmann R, Bernardi G, Crouse EJ. Compositional Heterogeneity of the Chloroplast DNAs from Euglena gracilis and Spinacia oleracea. European Journal of Biochemistry. 1981;117:375-382.
  123. Lyon E. Mutation detection using fluorescent hybridization probes and melting curve analysis. Expert Review of Molecular Diagnostics. 2001;1:92-101.
  124. Ruskova L, Raclavsky V. The potential of high resolution melting analysis (HRMA) to streamline, facilitate and enrich routine diagnostics in medical microbiology. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia. 2011;155:239-252.
  125. Li BS, Wang XY, Ma FL, Jiang B, Song XX, Xu AG. Is high resolution melting analysis (HRMA) accurate for detection of human disease-associated mutations? A meta analysis. PLoS One. 2011;6. Article No. e28078.
  126. Vossen RH, Aten E, Roos A, den Dunnen JT. High-resolution melting analysis (HRMA): more than just sequence variant screening. Human Mutation. 2009;30:860-866.
  127. Ghorashi SA, Noormohammadi AH, Markham PF. Differentiation of Mycoplasma gallisepticum strains using PCR and high-resolution melting curve analysis. Microbiology. 2010;156:1019-1029.
  128. Lyamichev VI, Panyutin IG, Cherny DI, Lyubchenko YuL. Localization of low-melting regions in phage T7 DNA. Nucleic Acids Research. 1983;11:2165-2176.
  129. Wartell RM, Benight AS. Fluctuational Base-Pair Opening in DNA at Temperatures Below the Helix-Coil Transition Region. Biopolymers. 1982;21:2069-2081.
  130. Steger G. Thermal denaturation of double-stranded nucleic acids: prediction of temperatures critical for gradient gel electrophoresis and polymerase chain reaction. Nucleic Acids Research. 1994;22:2760-2768.
  131. Blake RD, Bizzaro JW, Blake JD, Day GR, Delcourt SG, Knowles J, Marx KA, Santa-Lucia JJr. Statistical mechanical simulation of polymeric DNA melting with MELTSIM. Bioinformatics. 1999;15:370-375.
  132. Rasmussen JP, Saint CP, Monis PT. Use of DNA melting simulation software for in silico diagnostic assay design: targeting regions with complex melting curves and confirmation by real-time PCR using intercalating dyes. BMC Bioinformatics. 2007;8. Article No. 107.
  133. Yeramian E, Jones L. GeneFizz: A web tool to compare genetic (coding/non-coding) and physical (helix/coil) segmentations of DNA sequences. Gene discovery and evolutionary perspectives. Nucleic Acids Research. 2003;31:3843-3849.
  134. Leber M, Kaderali L, Schonhuth A, Schrader R. A fractional programming approach to efficient DNA melting temperature calculation. Bioinformatics. 2005;21:2375-2382.
  135. Yeramian E. Genes and the physics of the DNA double-helix. Gene. 2000;255:139-150.
  136. Yeramian E. The physics of DNA and the annotation of the Plasmodium falciparum genome. Gene. 2000;255:151-168.
  137. Gaeta G, Reiss C, Peyrard M, Dauxois T. Simple models of non-linear DNA dynamics. In: La Rivista del Nuovo Cimento, Ser. 3. 1994;17(4):1-48.
  138. Yakushevich LV. Nonlinear Physics of DNA. 2nd Edition. New York: Wiley; 2004. 207 p.
  139. Mandal C, Kallenbach NR, Englander SW. Base-pair opening and closing reactions in the double helix: A stopped-flow hydrogen exchange study in poly(rA):poly(rU). Journal of Molecular Biology. 1979;135:391-411.
  140. Englander SW, Kallenbach NR, Heeger AJ, Krumhansl JA, Litwin S. Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. PNAS USA. 1980;77:7222-7226.
  141. Yomosa S. Soliton excitations in deoxyribonucleic acid (DNA) double helices. Physical Review A. 1983;27:2120-2125.
  142. Yomosa S. Solitary excitations in deoxyribonucleic acid (DNA) double helices. Physical Review A. 1984;30:474-480.
  143. Teitelbaum H, Englander SW. Open states in native polynucleotides: I. Hydrogen-exchange study of adenine-containing double helices. Journal of Molecular Biology. 1975;92:55-78.
  144. Teitelbaum H, Englander SW. Open states in native polynucleotides: II. Hydrogen-exchange study of cytosine-containing double helices. Journal of Molecular Biology. 1975;92:79-92.
  145. Nakanishi M, Tsuboi M. Two channels of hydrogen exchange in a double-helical nucleic acid. Journal of Molecular Biology. 1978;124:61-71.
  146. Takeno S, Homma S. Topological Solitons and Modulated Structure of Bases in DNA Double Helices - A Dynamic Plane Base-Rotator Model. Progress of Theoretical Physics. 1983;70:308-311.
  147. Homma S, Takeno S. A Coupled Base-Rotator Model for Structure and Dynamics of DNA - Local Fluctuations in Helical Twist Angles and Topological Solitons. Progress of Theoretical Physics. 1984;72:679-693.
  148. Zhang C-T. Soliton excitations in deoxyribonucleic acid (DNA) double helices. Physical Review A. 1987;35:886-891.
  149. Gao Y, Prohofsky EW. A modified self-consistent phonon theory of hydrogen bond melting. The Journal of Chemical Physics. 1984;80. Article No. 2242.
  150. Gao Y, Devi-Prasad KV, Prohofsky EW. A self-consistent microscopic theory of hydrogen bond melting with application to poly(dG)-poly(dC). The Journal of Chemical Physics. 1984;80. Article No. 6291.
  151. Prohofsky EW. Solitons hiding in DNA and their possible significance in RNA transcription. Physical Review A. 1988;38:1538-1541.
  152. Peyrard M, Bishop AR. Statistical Mechanics of a Nonlinear Model for DNA Denaturation. Physical Review Letters. 1989;62:2755-2758.
  153. Dauxois T, Peyrard M, Bishop AR. Dynamics and thermodynamics of a nonlinear model for DNA denaturation. Physical Review E. 1993;47:684-695.
  154. Dauxois T, Peyrard M, Bishop AR. Entropy-driven DNA denaturation. Physical Review E. 1993;47. P. R44-R47.
  155. Cule D, Hwa T. Denaturation of Heterogeneous DNA. Physical Review Letters. 1997;79:2375-2378.
  156. Dauxois T, Peyrard M. Entropy-driven transition in a one-dimensional system. Physical Review E. 1995;51:4027-4040.
  157. Van Zandt LL. DNA solitons with realistic parameter values. Physical Review A. 1989;40:6134-6137.
  158. Techera M, Daemen LL, Prohofsky EW. Comment on ‘‘DNA solitons with realistic parameters’’. Physical Review A. 1990;42:5033-5035.
  159. Van Zandt LL. Reply to ‘‘Comment on ‘DNA solitons with realistic parameters’’. Physical Review A. 1990;42:5036-5039.
  160. Drigo-Filho E, Ruggiero JR. Parameters describing the H-bond in DNA. Physical Review A. 1991;44:8435-8436.
  161. Banavali NK, MacKerell AD Jr. Free energy and structural pathways of base flipping in a DNA GCGC containing sequence. Journal of Molecular Biology. 2002;319:141-160.
  162. Giudice E, Varnai P, Lavery R. Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. Nucleic Acids Research. 2003;31:1434-1443.
  163. Bouvier B, Grubmuller H. A Molecular Dynamics Study of Slow Base Flipping in DNA using Conformational Flooding. Biophysical Journal. 2007;93:770-786.
  164. Yakushevich LV. Nonlinear DNA dynamics: a new model. Physics Letters A. 1989;136:413-417.
  165. Yakushevich LV. Is DNA a nonlinear dynamical system where solitary conformational waves are possible? Journal of Biosciences. 2001;26:305-313.
  166. Yakushevich LV. Modeling the Internal Mobility of the Molecule of DNA. International Journal of Quantum Chemistry. 2002;88:570-578.
  167. Yakushevich LV, Savin AV, Manevitch LI. Nonlinear dynamics of topological solitons in DNA. Physical Review E. 2002;66. Article No. 016614.
  168. Gaeta G. Solitons in the Yakushevich model of DNA beyond the contact approximation. Physical Review E. 2006;74. Article No. 021921.
  169. Cadoni M, De Leo R, Gaeta G. Composite model for DNA torsion dynamics. Physical Review E. 2007;75. Article No. 021919.
  170. Daniel M, Vasumathi V. Solitonlike base pair opening in a helicoidal DNA: An analogy with a helimagnet and a cholesteric liquid crystal. Physical Review E. 2009;79. Article No. 012901.
  171. Cadoni M, De Leo R, Demelio S. Soliton propagation in homogeneous and non-homogeneous models for DNA torsion dynamics. Journal of Nonlinear Mathematical Physics. 2011;18:287-319.
  172. Yakushevich LV, Ryasik AA. Dynamical characteristics of DNA kinks and antikinks. Komp'iuternye issledovaniia i modelirovanie (Computer Research and Modeling). 2012;4(1):209-217 (in Russ.).
  173. Barbi M, Cocco S, Peyrard M. Helicoidal model for DNA opening. Physics Letters A. 1999;253:358-369.
  174. Barbi M, Cocco S, Peyrard M, Ruffo S. A Twist Opening Model for DNA. Journal of Biological Physics. 1999;24:97-114.
  175. Campa A. Bubble propagation in a helicoidal molecular chain. Physical Review E. 2001;63. Article No. 021901.
  176. Cocco S, Monasson R. Statistical Mechanics of Torque Induced Denaturation of DNA. Physical Review Letters. 1999;83:5178-5181.
  177. Cocco S, Monasson R. Theoretical study of collective modes in DNA at ambient temperature. The Journal of Chemical Physics. 2000;112:10017-10033.
  178. Cocco S, Monasson R, Marko JF. Force and kinetic barriers to initiation of DNA unzipping. Physical Review E. 2002;65. Article No. 041907.
  179. Barbi M, Lepri S, Peyrard M, Theodorakopoulos N. Thermal denaturation of a helicoidal DNA model. Physical Review E. 2003;68. Article No. 061909.
  180. Cocco S, Monasson R, Marko JF. Force and kinetic barriers to unzipping of the DNA double helix. PNAS USA. 2001;98:8608-8613.
  181. Drukker K, Wu G, Schatz GC. Model simulations of DNA denaturation dynamics. Journal of Chemical Physis. 2001;114:579-590.
  182. Calvo GF, Alvarez-Estrada RF. Three-dimensional models for homogeneous DNA near denaturation. Journal of Physics: Condensed Matter. 2005;17:7755-7781.
  183. Hien DL, Nhan NT, Thanh Ngo V, Viet NA. Simple combined model for nonlinear excitations in DNA. Physical Review E. 2007;76. Article No. 021921.
  184. Goldman C, Olson WK. DNA denaturation as a problem of translational-symmetry restoration. Physical Review E. 1993;48:1461-1468.
  185. Pitici F, Svirschevski S. Effective-phonon theory for DNA melting. Physical Review A. 1991;44:8348-8355.
  186. Zoli M. Path integral method for DNA denaturation. Physical Review E. 2009;79. Article No. 041927.
  187. Ares S, Sanchez A. Modelling disorder: the cases of wetting and DNA denaturation. European Physical Journal B. 2007;56:253-258.
  188. Theodorakopoulos N, Dauxois T, Peyrard M. Order of the Phase Transition in Models of DNA Thermal Denaturation. Physical Review Letters. 2000;85:6-9.
  189. Zhang Y, Zheng W-M, Liu J-X, Chen YZ. Theory of DNA melting based on the Peyrard-Bishop model. Physical Review E. 1997;56:7100-7115.
  190. Joyeux M, Buyukdagli S. Dynamical model based on finite stacking enthalpies for homogeneous and inhomogeneous DNA thermal denaturation. Physical Review E. 2005;72. Article No. 051902.
  191. Buyukdagli S, Sanrey M, Joyeux M. Towards more realistic dynamical models for DNA secondary structure. Chemical Physics Letters. 2006;419:434-438.
  192. Radosz A, Ostasiewicz K, Magnuszewski P, Damczyk J, Radosinski L, Kusmartsev FV, Samson JH, Mitus AC, Pawlik G. Thermodynamics of entropy-driven phase transformations. Physical Review E. 2006;73. Article No. 026127.
  193. Weber G. Sharp DNA denaturation due to solvent interaction. Europhysics Letters. 2006;73:806-811.
  194. Cuenda S, Sanchez A. On the discrete Peyrard-Bishop model of DNA: Stationary solutions and stability. CHAOS. 2006;16. Article No. 023123.
  195. Zamora-Sillero E, Shapovalov AV, Esteban FJ. Formation, control, and dynamics of N localized structures in the Peyrard-Bishop model. Physical Review E. 2007;76. Article No. 066603.
  196. Slade GG, Drigo Filho E, Ruggiero JR. Stability of breathers in simple mechanical models for DNA. Journal of Physics: Conference Series. 2010;246. Article No. 012039.
  197. Tabi CB, Ekobena Fouda HP, Mohamadou A, Kofane TC. Wave propagation of coupled modes in the DNA double helix. Physica Scripta. 2011;83. Article No. 035802.
  198. Tabi CB, Mohamadou A, Kofane TC. Soliton excitation in the DNA double helix. Physica Scripta. 2008;77. Article No. 045002.
  199. Tabi CB, Mohamadou A, Kofane TC. Modulational instability in the anharmonic Peyrard-Bishop model of DNA. European Physical Journal B. 2010;74:151-158.
  200. Maniadis P, Alexandrov BS, Bishop AR, Rasmussen KO. Feigenbaum cascade of discrete breathers in a model of DNA. Physical Review E. 2011;83. Article No. 011904.
  201. Zdravkovic S, Sataric MV. The Impact of Viscosity on the DNA Dynamics. Physica Scripta. 2001;64:612-619.
  202. Zdravkovic S, Sataric MV. Solitonic speed in DNA. Physical Review E. 2008;77. Article No. 031906.
  203. Cuevas J, Archilla JFR, Gaididei YuB, Romero FR. Moving breathers in a DNA model with competing short- and long-range dispersive interactions. Physica D: Nonlinear Phenomena. 2002;163:106-126.
  204. Larsen PV, Christiansen PL, Bang O, Archilla JFR, Gaididei YuB. Energy funneling in a bent chain of Morse oscillators with long-range coupling. Physical Review E. 2004;69. Article No. 026603.
  205. Alvarez A, Romero FR, Archilla JFR, Cuevas J, Larsen PV. Breather trapping and breather transmission in a DNA model with an interface. European Physical Journal B. 2006;51:119-130.
  206. Forinash K, Keeney J. Nonlinearly coupled double chain systems. Journal of Biological Physics. 1991;18:19-29.
  207. Alvarez A, Romero FR, Cuevas J, Archilla JFR. Moving breather collisions in Klein-Gordon chains of oscillators. European Physical Journal B. 2009;70:543-555.
  208. Wattis JAD, Harris SA, Grindon CR, Laughton CA. Dynamic model of base pair breathing in a DNA chain with a defect. Physical Review E. 2001;63. Article No. 061903.
  209. Zolotaryuk AV, Christiansen PL, Savin AV. Two-dimensional dynamics of a free molecular chain with a secondary structure. Physical Review E. 1996;54:3881-3894.
  210. Muto V, Lomdahl PS, Christiansen PL. Two-dimensional discrete model for DNA dynamics: Longitudinal wave propagation and denaturation. Physical Review A. 1990;42:7452-7458.
  211. Muto V. Soliton Oscillations for DNA Dynamics. Acta Applicandae Mathematicae. 2011;15(1):5-15.
  212. Alexandrov BS, Wille LT, Rasmussen KO, Bishop AR, Blagoev KB. Bubble statistics and dynamics in double-stranded DNA. Physical review E. 2006;74. Article No. 050901(R).
  213. Altan-Bonnet G, Libchaber A, Krichevsky O. Bubble Dynamics in Double-Stranded DNA. Physical Review Letters. 2003;90. Article No. 138101.
  214. Sobell HM. Actinomycin and DNA transcription. PNAS USA. 1985;82:5328-5331.
  215. Cluzel P, Lebrun A, Heller C, Lavery R, Viovy JL, Chatenay D, Caron F. DNA: an extensible molecule. Science. 1996;271:792-794.
  216. Techera M, Daemen LL, Prohofsky EW. Analysis of a nonlinear model for the DNA double helix: Energy transfer in an inhomogeneous chain. Physical Review A. 1990;42:1008-1011.
  217. Muto V. Local Denaturation in DNA Molecules. Journal of Biological Physics. 1993;19:113-122.
  218. Forinash K, Bishop AR, Lomdahl PS. Nonlinear dynamics in a double-chain model of DNA. Physical Review B. 1991;43:10743-10750.
  219. Forinash K, Peyrard M, Malomed B. Interaction of discrete breathers with impurity modes. Physical Review E. 1994;49:3400-3411.
  220. Chela-Fiores J, Migoni RL. CG Methylation in DNA Transcription. International Journal of Theoretical Physics. 1990;29:853-862.
  221. Campa A, Giansanti A. Experimental tests of the Peyrard-Bishop model applied to the melting of very short DNA chains. Physical Review E. 1998;58:3585-3588.
  222. Lavery R, Lebrun A, Allemand J-F, Bensimon D, Croquette V. Structure and mechanics of single biomolecules: experiment and simulation. Journal of Physics: Condensed Matter. 2002;14:R383-R414.
  223. Bustamante C, Smith SB, Liphardt J, Smith D. Single-molecule studies of DNA mechanics. Current Opinion in Structural Biology. 2000;10:279-285.
  224. Smith SB, Finzi L, Bustamante C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science. 1992;258:1122-1126.
  225. Bustamante C, Marko JF, Siggia ED, Smith S. Entropic elasticity of lambda-phage DNA. Science. 1994;265:1599-600.
  226. Smith SB, Cui Y, Bustamante C. Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules. Science. 1996;271:795-799.
  227. Allemand JF, Bensimon D, Lavery R, Croquette V. Stretched and overwound DNA forms a Pauling-like structure with exposed bases. PNAS USA. 1998;95:14152-14157.
  228. Clausen-Schaumann H, Rief M, Tolksdorf C, Gaub HE. Mechanical Stability of Single DNA Molecules. Biophysical Journal. 2000;78:1997-2007.
  229. Rief M, Clausen-Schaumann H, Gaub HE. Sequence-dependent mechanics of single DNA molecules. Nature Structural Biology. 1999;6:346-349.
  230. Bockelmann U, Essevaz-Roulet B, Heslot F. Molecular Stick-Slip Motion Revealed by Opening DNA with Piconewton Forces. Physical Review Letters. 1997;79:4489-4492.
  231. Essevaz-Ruolet B, Bockelmann U, Heslot F. Mechanical separation of the complementary strands of DNA. PNAS USA. 1997;94:11935-11940.
  232. Bockelmann U, Thomen Ph, Essevaz-Roulet B, Viasnoff V, Heslot F. Unzipping DNA with Optical Tweezers: High Sequence Sensitivity and Force Flips. Biophysical Journal. 2002;82:1537-1553.
  233. Bockelmann U, Viasnoff V. Theoretical Study of Sequence-Dependent Nanopore Unzipping of DNA. Biophysical Journal. 2008;94:2716-2724.
  234. Benham CJ. Theoretical analysis of heteropolymeric transitions in superhelical DNA molecules of specified sequence. The Journal of Chemical Physics. 1990;92:6294-6305.
  235. Benham CJ. Sites of predicted stress-induced DNA duplex destabilization occur preferentially at regulatory loci. PNAS USA. 1993;90:2999-3003.
  236. Benham CJ. Duplex destabilization in superhelical DNA is predicted to occur at specific transcriptional regulatory regions. Journal of Molecular Biology. 1996;255:425-434.
  237. Fye RM, Benham CJ. Exact method for numerically analyzing a model of local denaturation in superhelically stressed DNA. Physical Review E. 1999;59:3408-3426.
  238. Rudnick J, Bruinsma R. Effects of torsional strain on thermal denaturation of DNA. Physical Review E. 2002;65. Article No. 030902(R).
  239. Hwa T, Marinari E, Sneppen K, Tang LH. Localization of denaturation bubbles in random DNA sequences. PNAS USA. 2003;100:4411-4416.
  240. Michoel T, Van de Peer Y. Helicoidal transfer matrix model for inhomogeneous DNA melting. Physical Review E. 2006;73. Article No. 011908.
  241. Nelson P. Transport of torsional stress in DNA. PNAS USA. 1999;96:14342-14347.
  242. Benham CJ, Singh RRP. Comment on ‘‘Can One Predict DNA Transcription Start Sites by Studying Bubbles?’’. Physical Review Letters. 2006;97:059801.
  243. Benham C, Kohwi-Shigematsu T, Bode J. Stress-induced Duplex DNA Destabilization in Scaffold/Matrix Attachment Regions. Journal of Molecular Biology. 1997;274:181-196.
  244. Wang H, Benham CJ. Promoter prediction and annotation of microbial genomes based on DNA sequence and structural responses to superhelical stress. BMC Bioinformatics. 2006;7. Article No. 248.
  245. Trovato F, Tozzini V. Supercoiling and Local Denaturation of Plasmids with a Minimalist DNA Model. Journal of Physical Chemistry B. 2008;112:13197-13200.
  246. Kumar S, Li MS. Biomolecules under mechanical force. Physics Reports. 2010;486:1-74.
  247. Marenduzzo D, Bhattacharjee SM, Maritan A, Orlandini E, Seno F. Dynamical Scaling of the DNA Unzipping Transition. Physical Review Letters. 2002;88. Article No. 028102.
  248. Kapri R, Bhattacharjee SM, Seno F. Complete Phase Diagram of DNA Unzipping: Eye, Y-Fork, and Triple Point. Physical Review Letters. 2004;93. Article No. 248102.
  249. Kumar S, Giri D, Bhattacahrjee SM. Force induced triple point for interacting polymers. Physical Review E. 2005;71. Article No. 051804.
  250. Giri D, Kumar S. Effects of the eye phase in DNA unzipping. Physical Review E. 2006;73. Article No. 050903(R).
  251. Kumar S, Giri D. Probability distribution analysis of force induced unzipping of DNA. The Journal of Chemical Physics. 2006;125. Article No. 044905.
  252. Singh AR, Giri D, Kumar S. Force induced melting of the constrained DNA. The Journal of Chemical Physics. 2010;32. Article No. 235105.
  253. Lubensky DK, Nelson DR. Pulling Pinned Polymers and Unzipping DNA. Physical Review Letters. 2000;85:1572-1575.
  254. Lubensky DK, Nelson DR. Single molecule statistics and the polynucleotide unzipping transition. Physical Review E. 2002;65. Article No. 031917.
  255. Thompson RE, Siggia ED. Physical limits on the mechanical measurement of the secondary structure of biomolecules. Europhysics Letters. 1995;31:335-340.
  256. Viovy JL, Heller C, Caron F, Cluzel P, Chatenay D. Sequencing of DNA by mechanical opening of the double helix: a theoretical evaluation. Comptes rendus de l' Academie des sciences Paris (Life Sciences). 1994;317:795-800.
  257. Peyrard M. Using DNA to probe nonlinear localized excitations? Europhysics Letters. 1998;44:271-277.
  258. Krautbauer R, Rief M, Gaub HE. Unzipping DNA Oligomers. Nano Letters. 2003;3:493-496.
  259. Singh N, Singh Y. Statistical theory of force-induced unzipping of DNA. European Physical Journal E. 2005;17:7-19.
  260. Voulgarakis NK, Redondo A, Bishop AR, Rasmussen KO. Probing the Mechanical Unzipping of DNA. Physical Review Letters. 2006;96. Article No. 248101.
  261. Zeng Y, Montrichok A, Zocchi G. Bubble nucleation and cooperativity in DNA melting. Journal of Molecular Biology. 2004;339:67-75.
  262. Ares S, Voulgarakis NK, Rasmussen KO, Bishop AR. Bubble Nucleation and Cooperativity in DNA Melting. Physical Review Letters. 2005;94. Article No. 035504.
  263. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics. 1953;21:1087-1092.
  264. van Erp TS, Cuesta-Lopez S, Peyrard M. Bubbles and denaturation in DNA. European Physical Journal E. 2006;20:421-434.
  265. van Erp TS, Cuesta-Lopez S, Hagmann J-G, Peyrard M. Can One Predict DNA Transcription Start Sites by Studying Bubbles? Physical Review Letters. 2005;95. Article No. 218104.
  266. Wiegand RC, Godson GN, Radding CN. Specificity of the S1 Nuclease from Aspergillus oryzae. The Journal of Biological Chemistry. 1975;250:8848-8855.
  267. Rapti Z, Smerzi A, Rasmussen KO, Bishop AR, Choi CH, Usheva A. Lengthscales and cooperativity in DNA bubble formation. Europhysics Letters. 2006;74:540-546.
  268. Rapti Z, Smerzi A, Rasmussen KO, Bishop AR. Healing length and bubble formation in DNA. Physical Review E. 2006;73. Article No. 051902.
  269. Choi CH, Rapti Z, Gelev V, Hacker MR, Alexandrov B, Park EJ, Park JS, Horikoshi N, Smerzi A, Rasmussen KO, Bishop AR, Usheva A. Profiling the Thermodynamic Softness of Adenoviral Promoters. Biophysical Journal. 2008;95:597-608.
  270. Liu F, Tostesen E, Sundet JK, Jenssen T-K, Bock C, Jerstad GI, Thilly WG, Hovig E. The Human Genomic Melting Map. PLoS Computational Biology. 2007;3(5):0874-0886.
  271. Abeel T, Saeys Y, Bonnet E, Rouze P, Van de Peer Y. Generic eukaryotic core promoter prediction using structural features of DNA. Genome Research. 2008;18:310-323.
  272. Kantorovitz MR, Rapti Z, Gelev V, Usheva A. Computing DNA duplex instability profiles efficiently with a two-state model: trends of promoters and binding sites. BMC Bioinformatics. 2010;11. Article No. 604.
  273. Alexandrov BS, Gelev V, Yoo SW, Bishop AR, Rasmussen KO, Usheva A. Toward a Detailed Description of the Thermally Induced Dynamics of the Core Promoter. PLoS Computational Biology. 2009;5:1-10.
  274. Alexandrov BS, Gelev V, Monisova Y, Alexandrov LB, Bishop AR, Rasmussen KO, Usheva A. A nonlinear dynamic model of DNA with a sequence-dependent stacking term. Nucleic Acids Research. 2009;37:2405-2410.
  275. Alexandrov BS, Gelev V, Yoo SW, Alexandrov LB, Fukuyo Y, Bishop AR, Rasmussen KO, Usheva A. DNA dynamics play a role as a basal transcription factor in the positioning and regulation of gene transcription initiation. Nucleic Acids Research. 2010;38:1790-1795.
  276. Alexandrov BS, Valtchinov VI, Alexandrov LB, Gelev V, Dagon Y, Bock J, Kohane IS, Rasmussen KO, Bishop AR, Usheva A. DNA Dynamics Is Likely to Be a Factor in the Genomic Nucleotide Repeats Expansions Related to Diseases. PLoS One. 2011;6:1-6.
  277. Dornberger U, Leijon M, Fritzsche H. High Base Pair Opening Rates in Tracts of GC Base Pairs. The Journal of Biological Chemistry. 1999;274:6957-6962.
  278. Maiti S, Haupts U, Webb WW. Fluorescence correlation spectroscopy: Diagnostics for sparse molecules. PNAS USA. 1997;94:11753-11757.
  279. Bonnet G, Krichevsky O, Libchaber A. Kinetics of conformational fluctuations in DNA hairpin-loops. PNAS USA. 1998;95:8602-8606.
  280. Krueger A, Protozanova E, Frank-Kamenetskii MD. Sequence-dependent base pair opening in DNA double helix. Biophysical Journal. 2006;90:3091-3099.
  281. Gueron M, Kochoyan M, Leroy JL. A single mode of DNA base-pair opening drives imino proton exchange. Nature. 1987;328:89-92.
  282. Kochoyan M, Leroy JL, Gueron M. Proton Exchange and Base-pair Lifetimes in a Deoxy-duplex Containing a Purine-Pyrimidine Step and in the Duplex of Inverse Sequence. Journal of Molecular Biology. 1987;196:599-609.
  283. Leroy JL, Kochoyan M, Huynh-Dinh T, Gueron M. Characterization of base-pair opening in deoxynucleotide duplexes using catalyzed exchange of the imino proton. Journal of Molecular Biology. 1988;200:223-238.
  284. Kochoyan M, Lancelot G, Leroy JL. Study of structure, base-pair opening kinetics and proton exchange mechanism of the d(AATTGCAATT) self-complementary oligodeoxynucleotide in solution. Nucleic Acids Research. 1988;16:7685-7702.
  285. Moe JG, Russu IM. Proton exchange and base-pair opening kinetics in 5'-d(CGCGAATTCGCG)-3' and related dodecamers. Nucleic Acids Research. 1990;18:821-827.
  286. Leroy JL, Gao XL, Gueron M, Patel DJ. Proton exchange and internal motions in two chromomycin dimer-DNA oligomer complexes. Biochemistry. 1991;30:5653-5661.
  287. David SS, Williams SD. Chemistry of glycosylases and endonucleases involved in base-excision repair. Chemical Reviews. 1998;98:1221-1262.
  288. Stivers JT. Site-Specific DNA Damage Recognition by Enzyme-Induced Base Flipping. Progress in Nucleic Acid Research and Molecular Biology. 2004;77:37-65.
  289. Klimasauskas S, Kumar S, Roberts RJ, Cheng X. HhaI methyltransferase flips its target base out of the DNA helix. Cell. 1994;76:57-69.
  290. Reinisch KM, Chen L, Verdine GL, Lipscomb WN. The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell. 1995;82:143-153.
  291. Cheng X, Roberts RJ. AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Research. 2001;29:3784-3795.
  292. Lau AY, Wyatt MD, Glassner BJ, Samson LD, Ellenberger T. Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. PNAS USA. 2000;97:13573-13578.
  293. Hollis T, Ichikawa Y, Ellenberger T. DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA. EMBO Journal. 2000;19:758-766.
  294. Fromme JC, Verdine GL. DNA Lesion Recognition by the Bacterial Repair Enzyme MutM. The Journal of Biological Chemistry. 2003;278:51543-51548.
  295. Lyakhov IG, Hengen PN, Rubens D, Schneider TD. The P1 phage replication protein RepA contacts an otherwise inaccessible thymine N3 proton by DNA distortion or base flipping. Nucleic Acids Research. 2001;29:4892-4900.
  296. Schneider TD. Strong minor groove base conservation in sequence logos implies DNA distortion or base flipping during replication and transcription initiation. Nucleic Acids Research. 2001;29:4881-4891.
  297. Gueron M, Leroy JL. Studies of base pair kinetics by NMR measurement of proton exchange. Methods in Enzymology. 1995;261:383-413.
  298. Crothers DM, Cole PE, Hilbers CW, Shulman RG. The molecular mechanism of thermal unfolding of Escherichia coli formylmethionine transfer RNA. Journal of Molecular Biology. 1974;87:63-72.
  299. Warmlander S, Sen A, Leijon M. Imino proton exchange in DNA catalyzed by ammonia and trimethylamine: evidence for a secondary long-lived open state of the base pair. Biochemistry. 2000;39:607-615.
  300. Folta-Stogniew E., Russu IM. Base-catalysis of imino proton exchange in DNA: effects of catalyst upon DNA structure and dynamics. Biochemistry. 1996;35:8439-8449.
  301. Leijon M, Leroy JL. Internal motions of nucleic acid structures and the determination of base-pair lifetimes. Biochimie. 1997;79:775-779.
  302. Forsen S, Hoffman RA. Study of Moderately Rapid Chemical Exchange Reactions by Means of Nuclear Magnetic Double Resonance. The Journal of Chemical Physics. 1963;39:2892-2901.
  303. Mihailescu MR, Russu IM. A signature of the T → R transition in human hemoglobin. PNAS USA. 2001;98:3773-3777.
  304. Snoussi K, Leroy JL. Imino proton exchange and base-pair kinetics in RNA duplexes. Biochemistry. 2001;31:8898-8904.
  305. Snoussi K, Leroy JL. Alteration of A.T base-pair opening kinetics by the ammonium cation in DNA A-tracts. Biochemistry. 2002;41:12467-12474.
  306. Varnai P, Canalia M, Leroy JL. Opening mechanism of G.T/U pairs in DNA and RNA duplexes: a combined study of imino proton exchange and molecular dynamics simulation. Journal of American Chemical Society. 2004;126:14659-14667.
  307. Chen C, Russu IM. Sequence-dependence of the energetics of opening of at basepairs in DNA. Biophysical Journal. 2004;87:2545-2551.
  308. Englander SW. A Hydrogen Exchange Method Using Tritium and Sephadex: Its Application to Ribonuclease. Biochemistry. 1963;2:798-807.
  309. Printz MP, von Hippel PH. Hydrogen Exchange Studies of DNA Structure. PNAS USA. 1965;53:363-370.
  310. Williams MN, Crothers DM. Binding kinetics of mercury(II) to polyribonucleotides. Biochemistry. 1975;14:1944-1951.
  311. Wilcoxon J, Schurr JM. Temperature dependence of the dynamic light scattering of linear phi29 DNA: Implications for spontaneous opening of the double helix. Biopolymers. 1983;22:2273-2321.
  312. Frank-Kamenetskii MD. Fluctuationsal Motility of DNA. In: Structure and Motion: Membranes, Nucleic Acids and Proteins. Eds.: Clemeti E, Corongiu G, Sarma MH, Sarma RH. Guilderland: Adenine Press; 1985. P. 417-422.
  313. Leroy J-L, Broseta D, Gueron M. Proton exchange and base-pair kinetics of poly(rA):poly(rU) and poly(rI):poly(rC). Journal of Molecular Biology. 184:165-178.
  314. Leroy JL, Bolo N, Figueroa N, Plateau P, Gueron M. Internal motions of transfer RNA: a study of exchanging protons by magnetic resonance. Journal of Biomolecular Structure and Dynamics. 1985;2:915-939.
  315. Kochoyan M, Leroy JL, Gueron M. Processes of base-pair opening and proton exchange in Z-DNA. Biochemistry. 1990;29:4799-4805.
  316. Leijon M, Graslund A. Effects of sequence and length on imino proton exchange and base pair opening kinetics in DNA oligonucleotide duplexes. Nucleic Acids Research. 1992;20:5339-5343.
  317. Nonin S, Leroy JL, Gueron M. Terminal base pairs of oligodeoxynucleotides: imino proton exchange and fraying. Biochemistry. 1995;34:10652-10659.
  318. Moe JG, Russu IM. Kinetics and energetics of base-pair opening in 5'-d(CGCGAATTCGCG)-3' and a subsituted dodecamer containing G.T mismatches. Biochemistry. 1992;31:8421-8428.
  319. Coman D, Russu IM. Base pair opening in three DNA-unwinding elements. Journal of Biological Chemistry. 2005;280:20216-20221.
  320. Leroy JL, Charretier E, Kochoyan M, Gueron M. Evidence from base-pair kinetics for two types of adenine tract structures in solution: their relation to DNA curvature. Biochemistry. 1988;27:8894-8898.
  321. Yoon C, Prive GG, Goodsell DS, Dickerson RE. Structure of an alternating-B DNA helix and its relationship to A-tract DNA. PNAS USA. 1988;85:6332-6336.
  322. Edwards KJ, Brown DG, Spink N, Skelly JV, Neidle S. Molecular structure of the B-DNA dodecamer d(CGCAAATTTGCG)2. An examination of propeller twist and minor-groove water structure at 2.2 A resolution. Journal of Moleclar Biology. 1992;226:1161-1173.
  323. Shatzky-Schwartz M, Arbuckle ND, Eisenstein M, Rabinovich D, Bareket-Samish A, Haran TE, Luisi BF, Shakked Z. X-ray and solution studies of DNA oligomers and implications for the structural basis of A-tract-dependent curvature. Journal of Molecular Biology. 1997;267:595-623.
  324. Leijon M, Zdunek J, Fritzsche H, Sklenar H, Graslund A. NMR studies and restrained-molecular-dynamics calculations of a long A+T-rich stretch in DNA. Effects of phosphate charge and solvent approximations. European Journal of Biochemistry. 1995;234:832-842.
  325. Warmlander S, Sponer JE, Sponer J, Leijon M. The influence of the thymine C5 methyl group on spontaneous base pair breathing in DNA. Journal of Biological Chemistry. 2002;277:28491-28497.
  326. Movileanu L, Benevides JM, Thomas GJ Jr. Determination of base and backbone contributions to the thermodynamics of premelting and melting transitions in B DNA. Nucleic Acids Research. 2002;30:3767-3777.
  327. Dornberger U, Spackova N, Walter A, Gollmick FA, Sponer J, Fritzsche H. Solution structure of the dodecamer d-(CATGGGCC-CATG)2 is B-DNA. Experimental and molecular dynamics study. Journal of Biomolecular Structure & Dynamics. 2001;19:159-174.
  328. Denisov ET. Kinetika gomogennykh khimicheskikh reaktsii (Kinetics of Homogeneous Chemical Reactions). Moscow; 1978. 139 p. (in Russ.).
  329. Leijon M, Sehlstedt U, Nielsen PE, Graslund A. Unique base-pair breathing dynamics in PNA-DNA hybrids. Journal of Molecular Biology. 1997;271:438-455.
  330. Moe JG, Folta-Stogniew E, Russu IM. Energetics of base pair opening in a DNA dodecamer containing an A3T3 tract. Nucleic Acids Research. 1995;23:1984-1989.
  331. Coman D, Russu IM. A nuclear magnetic resonance investigation of the energetics of basepair opening pathways in DNA. Biophysical Journal. 2005;89:3285-3292.
  332. Goddard NL, Bonnet G, Krichevsky O, Libchaber A. Sequence Dependent Rigidity of Single Stranded DNA. Physical Review Letters. 2000;85:2400-2403.
  333. Movileanu L, Benevides JM, Thomas GI Jr. Temperature Dependence of the Raman Spectrum of DNA. II. Raman Signatures of Premelting and Melting Transitions of Poly(dA)-Poly(dT) and Comparison with Poly(dA-dT)-Poly(dA-dT). Biopolymers. 2002;63:181-194.
  334. Peyrard M, Cuesta-Lopez S, Angelov D. Experimental and theoretical studies of sequence effects on the fluctuation and melting of short DNA molecules. Journal of Physics: Condensed Matter. 2009;21(3). Article No. 034103.
  335. Freier SM, Hill KO, Dewey TG, Marky LA, Breslauer KJ, Turner DH. Solvent effects on the kinetics and thermodynamics of stacking in poly(cytidylic acid). Biochemistry. 1981;20:1419-1426.
  336. Gueron M, Shulman RG, Eisinger J. Energy transfer in dinucleotides. PNAS USA. 1966;56:814-818.
  337. Warshaw MM, Tinoco I Jr. Absorption and optical rotatory dispersion of six dinucleoside phosphates. Journal of Molecular Biology. 1965;13:54-64.
  338. Leng M, Felsenfeld G. A study of polyadenylic acid at neutral pH. Journal of Molecular Biology. 1966;15:455-466.
  339. Brahms J, Michelson AM, Van Holde KE. Adenylate Olygomers in Single- and Double-strand Conformation. Journal of Molecular Biology. 1966;15:467-488.
  340. Adler A, Grossman L, Fasman GD. Single-stranded oligomers and polymers of cytidylic and 2'-deoxycytidylic acids: comparative optical rotatory studies. PNAS USA. 1967;57:423-430.
  341. Vesnaver G, Breslauer KJ. The contribution of DNA single-stranded order to the thermodynamics of duplex formation. PNAS USA. 1991;88:3569-3573.
  342. Holbrook JA, Capp MW, Saecker RM, Record MT Jr. Enthalpy and heat capacity changes for formation of an oligomeric DNA duplex: interpretation in terms of coupled processes of formation and association of single-stranded helices. Biochemistry. 1999;38:8409-8422.
  343. Zhou J, Gregurick SK, Krueger S, Schwarz FP. Conformational Changes in Single-Strand DNA as a Function of Temperature by SANS. Biophysical Journal. 2006;90:544-551.
  344. Mills JB, Vacano E, Hagerman PJ. Flexibility of single-stranded DNA: use of gapped duplex helices to determine the persistence lengths of Poly(dT) and Poly(dA). Journal of Molecular Biology. 1999;285:245-257.
  345. Benight AS, Wartell RM, Howell DK. Theory agrees with experimental thermal denaturation of short DNA restriction fragments. Nature. 1981;289:203-205.
  346. Tibanyenda N, De Bruin SH, Haasnoot CA, van der Marel GA, van Boom JH, Hilbers CW. The effect of single base-pair mismatches on the duplex stability of d(T-A-T-T-A-A-T-A-T-C-A-A-G-T-T-G):d(C-A-A-C-T-T-G-A-T-A-T-T-A-A-T-A). European Journal of Biochemistry. 1984;139:19-27.
  347. Cuesta-Lopez S, Menoni H, Angelov D, Peyrard M. Guanine radical chemistry reveals the effect of thermal fluctuations in gene promoter regions. Nucleic Acids Research. 2011;39:5276-5283.
  348. Coll M, Frederick CA, Wang AH, Rich A. A bifurcated hydrogen-bonded conformation in the d(A.T) base pairs of the DNA dodecamer d(CGCAAATTTGCG)2 and its complex with distamycin. PNAS USA. 1987;84:8385-8389.
  349. Ting JJ-L, Peyrard M. Effective breather trapping mechanism for DNA transcription. Physical Review E. 1996;53:1011-1020.
  350. Ares S, Kalosakas G. Distribution of Bubble Lengths in DNA. Nano Letters. 2007;7:307-311.
  351. Krichevskii OM.: [personal communication, 6.11.2012] (in Russ.).
  352. Padro JA, Saiz L, Guardia E. Hydrogen bonding in liquid alcohols: a computer simulation study. Journal of Molecular Structure. 1997;416:243-248.
  353. Guardia E, Marti J, Padro JA, Saiz L, Komolkin AV. Dynamics in hydrogen bonded liquids: water and alcohols. Journal of Molecular Liquids. 2002;96-97:3-17.
  354. Breslauer KJ, Frank R, Blocker H, Marky LA. Predicting DNA duplex stability from the base sequence. PNAS USA. 1986;83:3746-3750.
  355. Nonin S, Leroy JL, Gueron M. Acid-induced exchange of the imino proton in G.C pairs. Nucleic Acids Research. 1996;24:586-595.
  356. Nakahara M, Wakai C. Inertial and attractive potential effects on rotation of solitary water molecules in apolar and polar solvents. The Journal of Chemical Physics. 1992;97. Article No. 4413.
  357. Every AE, Russu IM. Probing the Role of Hydrogen Bonds in the Stability of Base Pairs in Double-Helical DNA. Biopolymers. 2007;87:165-173.
  358. Fixman M, Friere J. Theory of DNA melting curves. Biopolymers. 1977;16:2693-2704.
  359. Poland D. Recursion Relation Generation of Probability Profiles for Specific-Sequence Macromolecules with Long-Range Correlations. Biopolymers. 1974;13:1859-1871.
  360. Gotoh O, Tagashira Y. Stabilities of Nearest-Neighbor Doublets in Double-Helical DNA Determined by Fitting Calculated Melting Profiles to Observed Profiles. Biopolymers. 1981;20:1033-1042.
  361. Gordan R, Hartemink AJ. Using DNA duplex stability information for transcription factor binding site discovery. Pacfic Symposium on Biocomputing. 2008;13:453-464.
  362. Klump H, Ackermann T. Experimental thermodynamics of the helix-random coil transition. IV. Influence of the base composition of DNA on the transition enthalpy. Biopolymers. 1971;10:513-522.
  363. Marky LA, Breslauer KJ. Calorimetric determination of base-stacking enthalpies in double-helical DNA molecules. Biopolymers. 1982;21:2185-2194.
  364. Chaplin M. Water Clusters: Overview. (accessed 21 October 2013).
  365. Klyachko NL. Sorosovskii obrazovatel'nyi zhurnal (Soros Educational Journal). 1997(3):58-63 (in Russ.).
  366. Banerjee A, Sobell HM. Presence of nonlinear excitations in DNA structure and their relationship to DNA premelting and to drug intercalation. Journal of Biomolecular Structure and Dynamics. 1983;1:253-262.
  367. de los Santos F, Al Hammal O, Munoz MA. Simplified Langevin approach to the Peyrard-Bishop-Dauxois model of DNA. Physical Review E. 2008;77. Article No. 032901.
  368. Beveridge DL, Barreiro G, Byun KS, Case DA, Cheatham TE 3rd, Dixit SB, Giudice E, Lankas F, Lavery R, Maddocks JH, Osman R, Seibert E, Sklenar H, Stoll G, Thayer KM, Varnai P, Young MA. Molecular Dynamics Simulations of the 136 Unique Tetranucleotide Sequences of DNA Oligonucleotides. I. Research Design and Results on d(CpG) Steps. Biophysical Journal. 2004;87:3799-3813.
  369. Dixit SB, Beveridge DL, Case DA, Cheatham TE 3rd, Giudice E, Lankas F, Lavery R, Maddocks JH, Osman R, Sklenar H, Thayer KM, Varnai P. Biophysical Journal. 2005;89:3721–3740
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2013.8.553
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References Translation into English
Math. Biol. Bioinf.
doi: 10.17537/2018.13.t162

Full text (eng., pdf)


  Copyright IMPB RAS © 2005-2024