References
- Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436:801–806.
doi: 10.1038/nature03721
- McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB. Path integration and the neural basis of the «cognitive map». Nat. Rev. Neurosci. 2006;7:663–678.
doi: 10.1038/nrn1932
- Barry C, Hayman R, Burgess N, Jeffery KJ. Experience-dependent rescaling of entorhinal grids. Nat. Neurosci. 2007;10:682–684.
doi: 10.1038/nn1905
- Derdikman D, Moser EI. A manifold of spatial maps in the brain. Trends Cogn. Sci. 2010;14:561–569.
doi: 10.1016/j.tics.2010.09.004
- Doeller CF, Barry C, Burgess N. Evidence for grid cells in a human memory network. Nature. 2010;463:657–661.
doi: 10.1038/nature08704
- Navratilova J, Giocomo LM, Fellous J-M, Hasselmo ME, McNaughton BL. Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics. Hippocampus. 2012;22:772–789.
doi: 10.1002/hipo.20939
- Giocomo LM, Roudi Y. The neural encoding of space in parahippocampal cortices. Front. Neural Circuits. 2012;6:53.
doi: 10.3389/fncir.2012.00053
- O’Keefe J, Dostrovsky J. The hippocampus as a spatial map: preliminary evidence from unit activity in the freely moving rat. Brain Res. 1971;34:171–175.
doi: 10.1016/0006-8993(71)90358-1
- O’Keefe J, Burgess N. Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus. 2005;15:853–866.
doi: 10.1002/hipo.20115
- O’Keefe J, Burgess N. Geometric determinants of the place fields of hippocampal neurons. Nature. 1996;381:425–428.
doi: 10.1038/381425a0
- Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I. Cellular networks underlying human spatial navigation. Nature. 2003;425:184–187.
doi: 10.1038/nature01964
- Geisler C, Robbe D, Zugaro M, Sirota A, Buzsaki G. Hippocampal place cell assemblies are speed controlled oscillators. PNAS USA. 2007;104:8149–8154.
doi: 10.1073/pnas.0610121104
- Diba K, Buzsaki G. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 2007;10:1241–1242.
doi: 10.1038/nn1961
- Moser EI, Kropff E, Moser MB. Place cells, grid cells, and the brain’s spatial representation system. Ann. Rev. Neurosci. 2008;31:69–89.
doi: 10.1146/annurev.neuro.31.061307.090723
- Taube JS, Muller RU, Ranck JBJr. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 1990;10:420–435.
- Taube JS, Muller RU, Ranck JrJB. Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci. 1990;10:436–447.
- Blair HT, Sharp PE. Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction. J. Neurosci. 1995;15:6260–6270.
- Zhang K. Representation of spatial orientation by the intrinsic dynamics of the head direction cell ensemble: a theory. J. Neurosci. 1996;16:2112–2126.
- Taube JS. Head direction cells and the neurophysiological basis for a sence of direction. Progr. Neurobiol. 1998;55:225–256.
doi: 10.1016/S0301-0082(98)00004-5
- Sharp PE, Blair HT, Cho J. The anatomical and computational basis of the rat head-direction cell signal. Trends Neurosci. 2001;24:289–294.
doi: 10.1016/S0166-2236(00)01797-5
- Zugaro MB, Arleo A, Berthoz A, Wiener SI. Rapid spatial reorientation and head direction cells. J. Neurosci. 2003;23:3478–3482.
- Taube JS, Bassett JP. Persistent neural activity in head direction cells. Cereb. Cortex. 2003;13:1162–1172.
doi: 10.1093/cercor/bhg102
- Taube JS. The head direction signal: origins and sensory-motor integration. Annu. Rev. Neurosci. 2007;30:181–207.
doi: 10.1146/annurev.neuro.29.051605.112854
- Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science. 2006;312:758–762.
doi: 10.1126/science.1125572
- Doeller CF, King JA, Burgess N. Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. PNAS USA. 2008;105:5915–5920.
doi: 10.1073/pnas.0801489105
- Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI. Representation of geometric borders in the entorhinal cortex. Science. 2008;322:1865–1868.
doi: 10.1126/science.1166466
- Savelli F, Yoganarasimha D, Knierim JJ. Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus. 2008;18:1270–1282.
doi: 10.1002/hipo.20511
- Lever C, Burton S, Jeewajee A, O’Keefe J, Burgess N. Boundary vector cells in the subiculum of the hippocampal formation. J. Neurosci. 2009;29:9771–9777.
doi: 10.1523/JNEUROSCI.1319-09.2009
- Bird CM, Capponi C, King JA, Doeller CF, Burgess N. Establishing the boundaries: the hippocampal contribution to imagining scenes. J. Neurosci. 2010;30:11688–11695.
doi: 10.1523/JNEUROSCI.0723-10.2010
- Itskov V, Curto C, Pastalkova E, Buzsaki G. Cell assembly sequences arising from spike threshold adaptation keep track of time in the hippocampus. J. Neurosci. 2011;31:2828–2834.
doi: 10.1523/JNEUROSCI.3773-10.2011
- MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H. Hippocampal «time cells» bridge the gap in memory for discontiguous events. Neuron. 2011;71:737–749.
doi: 10.1016/j.neuron.2011.07.012
- Kraus BJ, Robinson RJ, White JA, Eichenbaum H, Hasselmo ME. Hippocampal «time cells»: time versus path integration. Neuron. 2013;78:1–12.
doi: 10.1016/j.neuron.2013.04.015
- Eichenbaum H. Memory on time. Trends Cogn. Sciences. 2013;17:81–88.
doi: 10.1016/j.tics.2012.12.007
- Tsukerman VD, Kharybina ZS, Kulakov SV. In: trudy III Vserossiiskoi konf. «Nelineinaia dinamika v kognitivnykh issledovaniiakh-2013» (III All-Russian conference proceedings. "Nonlinear dynamics in cognitive studies 2013"). Nizhny Novgorod: IAP RAS; 2013. P. 183–186 (in Russ.).
- Burgess N, Barry C, O'Keefe J. An oscillatory interference model of grid cell firing. Hippocampus. 2007;17:801–812.
doi: 10.1002/hipo.20327
- Burgess N. Grid cells and theta as oscillatory interference: theory and predictions. Hippocampus. 2008;18:1157–1174.
doi: 10.1002/hipo.20518
- Jeewajee A, Barry C, O’Keefe J, Burgess N. Grid cells and theta as oscillatory interference: electrophysiological data from freely moving rats. Hippocampus. 2008;18:1175–1185.
doi: 10.1002/hipo.20510
- Samsonovich A, McNaughton BL. Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 1997;17:5900–5920.
- Battaglia FP, Treves A. Attractor neural networks storing multiple space representations: a model for hippocampal place fields. Physical Rev. E. 1998;58:7738–7753.
doi: 10.1103/PhysRevE.58.7738
- Fuhs MC, Touretzky DS. A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 2006;26:4266–4276.
doi: 10.1523/JNEUROSCI.4353-05.2006
- McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M-B. Path integration and the neural basis of the «cognitive map». Nat. Rev. Neurosci. 2006;7:663–678.
doi: 10.1038/nrn1932
- Guanella A, Kiper D, Verschure P. A model of grid cells based on a twisted torus topology. Int. J. Neural Syst. 2007;17:231–240.
doi: 10.1142/S0129065707001093
- Burak Y, Fiete IR. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 2009;5(2):e1000291.
doi: 10.1371/journal.pcbi.1000291
- Hasselmo ME, Brandon MP. A model combining oscillations and attractor dynamics for generation of grid cell firing. Front. Neur. Circuits. 2012;6:30.
doi: 10.3389/fncir.2012.00030
- Pastoll H, Solanka L, van Rossum MCW, Nolan MF. Feedback inhibition enables theta-nested gamma oscillations and grid firing fields. Neuron. 2013;77:141–154.
doi: 10.1016/j.neuron.2012.11.032
- Tsukerman VD, Cheshkov GN. In: Neirokomp'iutery: razrabotka, primenenie (Neurocomputers: Development and Application). 2002;7-8:65-72 (in Russ.).
- Tsukerman VD, Kulakov SV. In: Neirokomp'iutery: razrabotka, primenenie (Neurocomputers: Development and Application). 2004;11:15-25 (in Russ.).
- Tsukerman VD. Mathematical Model of Phase Coding of Events in the Brain. Matematicheskaya biologiya i bioinformatika (Mathematical Biology and Bioinformatics). 2006;1(1):97–107 (in Russ.).
doi: 10.17537/2006.1.97
- Tsukerman VD, Kulakov SV, Karimova OV. Rippling Codes of Event Sequences. Matematicheskaya biologiya i bioinformatika (Mathematical Biology and Bioinformatics). 2006;1(1):108–122 (in Russ.).
doi: 10.17537/2006.1.108
- Tsukerman VD, Karimova OV, Kulakov SV, Sazykin AA. In: Neirokomp'iutery: razrabotka, primenenie (Neurocomputers: Development and Application). 2010;2:17-27 (in Russ.).
- Tsukerman VD. In: Nelineinye volny-2010 (Nonlinear Waves-2010). Eds. Gaponova-Grekhova AV, Nekorkina VI. Nizhny Novgorod; 2011. P. 396-411 (in Russ.).
- Tsukerman VD, Eremenko ZS, Karimova OV, Sazykin AA, Kulakov SV. Mathematical Model of Spatial Encoding in Hippocampal Formation. I. Grid Cells Neurodynamics. Matematicheskaya biologiya i bioinformatika (Mathematical Biology and Bioinformatics). 2012;7(1):87–124 (in Russ.).
- Stensola H, Stensola T, Solstad T, Froland K, Moser M-B, Moser EI. The entorhinal grid map is discretized. Nature. 2012;492:72–78.
doi: 10.1038/nature11649
- Kim S, Lee J, Lee I. The hippocampus is required for visually cued contextual response selection, but not for visual discrimination of contexts. Front. Behav. Neurosci. 2012;6:66.
doi: 10.3389/fnbeh.2012.00066
- Brun VH, Solstad T, Kjelstrup KB, Fyhn M, Witter MP, Moser EI, Moser M-B. Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex. Hippocampus. 2008;18:1200–1212.
doi: 10.1002/hipo.20504
- Maurer AP, McNaughton BL. Network and intrinsic cellular mechanisms underlying theta phase precession of hippocampal neurons. Trends Neurosci. 2007;30:325–333.
doi: 10.1016/j.tins.2007.05.002
- van der Meer MAA, Redish AD. Theta phase precession in rat ventral striatum links place and reward information. J. Neurosci. 2011;31:2843–2854.
doi: 10.1523/JNEUROSCI.4869-10.2011
- Cheng S, Frank LM. New experiences enhance coordinated neural activity in the hippocampus. Neuron. 2008;57:303–313.
doi: 10.1016/j.neuron.2007.11.035
- Kubie JL, Fenton AA. Linear look-ahead in conjunctive cells an entorhinal mechanism for vector-based navigation. Front. Neur. Circuits. 2012;6:20.
doi: 10.3389/fncir.2012.00020
- Burgess N, Becker S, King JA, O’Keefe J. Memory for events and their spatial context: models and experiments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001;356:1493–1503.
doi: 10.1098/rstb.2001.0948
- Burgess N. Spatial memory: how egocentric and allocentric combine. Tren. Cog. Sci. 2006;10:551–557.
doi: 10.1016/j.tics.2006.10.005
- Waller D, Hodgson E. Transient and enduring spatial representations under disorientation and self-rotation. J. Exp. Psychol. Learn. Mem. Cogn. 2006;32:867–882.
doi: 10.1037/0278-7393.32.4.867
- Burgess N, Jackson A, Hartley T, O’Keefe J. Predictions derived from modelling the hippocampal role in navigation. Biol. Cybern. 2000;83:301–312.
doi: 10.1007/s004220000172
- Hartley T, Burgess N, Lever C, Cacucci F, O’Keefe J. Modeling place fields in terms of the cortical inputs to the hippocampus. Hippocampus. 2000;10:369–379.
doi: 10.1002/1098-1063(2000)10:4<369::AID-HIPO3>3.0.CO;2-0
- Save E, Poucet B. Involvement of the hippocampus and associative parietal cortex in the use of proximal and distal landmarks for navigation. Behav. Brain Res. 2000;109:195–206.
doi: 10.1016/S0166-4328(99)00173-4
- Zugaro MB, Berthoz A, Wiener SI. Background, but not foreground, spatial cues are taken as references for head direction responses by rat anterodorsal thalamus neurons. J. Neurosci. 2001;21(14):RC154.
- Knierim JJ, Rao G. Distal landmarks and hippocampal place cells: effects of relative translation versus rotation. Hippocampus. 2003;13:604–617.
doi: 10.1002/hipo.10092
- Yoganarasimha D, Knierim JJ. Coupling between place cells and head direction cells during relative translations and rotations of distal landmarks. Exp. Brain Res. 2005;160:344–359.
doi: 10.1007/s00221-004-2016-9
- Knierim JJ, Hamilton DA. Framing spatial cognition: neural representations of proximal and distal frames of reference and their roles in navigation. Physiol. Rev. 2011;91:1245–1279.
doi: 10.1152/physrev.00021.2010
- Fuhs MC, Touretzky DS. A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 2006;26:4266–4276.
doi: 10.1523/JNEUROSCI.4353-05.2006
- Barry C, Hayman R, Burgess N, Jeffery KJ. Experience-dependent rescaling of entorhinal grids. Nat. Neurosci. 2007;10:682–684.
doi: 10.1038/nn1905
- Yoganarasimha D, Yu X, Knierim JJ. Head direction cell representations maintain internal coherence during conflicting proximal and distal cue rotations: comparison with hippocampal place cells. J. Neurosci. 2006;26:622–631.
doi: 10.1523/JNEUROSCI.3885-05.2006
- Fyhn M, Hafting T, Treves A, Moser MB, Moser EI. Hippocampal remapping and grid realignment in entorhinal cortex. Nature. 2007;446:190–194.
doi: 10.1038/nature05601
- Markus EJ, Qin YL, Leonard B, Skaggs WE, McNaughton BL, Barnes CA. Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J. Neurosci. 1995;15:7079–7094.
- Wood ER, Dudchenko PA, Robitsek RJ, Eichenbaum H. Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron. 2000;27:623–633.
doi: 10.1016/S0896-6273(00)00071-4
- Griffin AL, Eichenbaum H, Hasselmo ME. Spatial representations of hippocampal CA1 neurons are modulated by behavioral context in a hippocampus-dependent memory task. J. Neurosci. 2007;27:2416–2423.
doi: 10.1523/JNEUROSCI.4083-06.2007
- Foster DJ, Knierim JJ. Sequence learning and the role of the hippocampus in rodent navigation. Curr. Opin. Neurobiol. 2012;22:294–300.
doi: 10.1016/j.conb.2011.12.005
- Pfeiffer BE, Foster DJ. Hippocampal place-cell sequences depict future paths to remembered goals. Nature. 2013;497:74–80.
doi: 10.1038/nature12112
- Morris RG, Garrud P, Rawlins JN, O’Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297:681–683.
doi: 10.1038/297681a0
- Redish AD, Touretzky DS. The role of the hippocampus in solving the Morris water maze. Neural Comput. 1998;10:73–111.
doi: 10.1162/089976698300017908
- Koene RA, Gorchetchnikov A, Cannon RC, Hasselmo ME. Modeling goal directed spatial navigation in the rat based on physiological data from the hippocampal formation. Neural Netw. 2003;16:577–584.
doi: 10.1016/S0893-6080(03)00106-0
- Hok V, Lenck-Santini P-P, Roux S, Save E, Muller RU, Poucet B. Goal-related activity in hippocampal place cells. J. Neurosci. 2007;27:472–482.
doi: 10.1523/JNEUROSCI.2864-06.2007
- Ferbinteanu J, Shapiro ML. Prospective and retrospective memory coding in the hippocampus. Neuron. 2003;40:1227–1239.
doi: 10.1016/S0896-6273(03)00752-9
- O’Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 1993;3:317–330.
doi: 10.1002/hipo.450030307
- Skaggs WE, McNaughton BL, Wilson MA, Barnes CA. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus. 1996;6:49–172.
doi: 10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K
- Foster DJ, Wilson MA. Hippocampal theta sequences. Hippocampus. 2007;17:1093–1099.
doi: 10.1002/hipo.20345
- Johnson A, Redish AD. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 2007;27:12176–12189.
doi: 10.1523/JNEUROSCI.3761-07.2007
- Dragoi G, Buzsaki G. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron. 2006;50:145–157.
doi: 10.1016/j.neuron.2006.02.023
- Lisman J, Redish AD. Prediction, sequences and the hippocampus. Phil. Trans. R. Soc. B. 2009;364:1193–1201.
doi: 10.1098/rstb.2008.0316
- Lee AK, Wilson MA. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron. 2002;36:1183–1194.
doi: 10.1016/S0896-6273(02)01096-6
- Foster DJ, Wilson MA. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature. 2006;440:680–683.
doi: 10.1038/nature04587
- Csicsvari J, O'Neill J, Allen K, Senior T. Place-selective firing contributes to the reverse-order reactivation of CA1 pyramidal cells during sharp waves in open-field exploration. Eur. J. Neurosci. 2007;26:704–716.
doi: 10.1111/j.1460-9568.2007.05684.x
- Diba K, Buzsaki G. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 2007;10:1241–1242.
doi: 10.1038/nn1961
- Davidson TJ, Kloosterman F, Wilson MA. Hippocampal replay of extended experience. Neuron. 2009;63:497–507.
doi: 10.1016/j.neuron.2009.07.027
- Karlsson MP, Frank LM. Awake replay of remote experiences in the hippocampus. Nat. Neurosci. 2009;12:913–918.
doi: 10.1038/nn.2344
- Gupta AS, van der Meer MA, Touretzky DS, Redish AD. Hippocampal replay is not a simple function of experience. Neuron. 2010;65:695–705.
doi: 10.1016/j.neuron.2010.01.034
- Packard MG, Knowlton BJ. Learning and memory functions of the basal ganglia. Annu. Rev. Neurosci. 2002;25:563–593.
doi: 10.1146/annurev.neuro.25.112701.142937
- Igloi K, Doeller CF, Berthoz A, Rondi-Reig L, Burgess N. Lateralized human hippocampal activity predicts navigation based on sequence or place memory. PNAS USA. 2010;107:14466–14471.
doi: 10.1073/pnas.1004243107
|
|
|