Russian version English version
Volume 9   Issue 2   Year 2014
Penenko A.V., Troeglazova T.S., Zubairova U.S., Bayshibaev D.Zh., Nikolaev S.V.

Usage of Parallel Algorithms Based on CUDA Technology for Realisation of Reaction-Diffusion Models of Two-Dimensional Cellular Ensemble

Mathematical Biology & Bioinformatics. 2014;9(2):491-503.

doi: 10.17537/2014.9.491.


  1. Thompson AW. On Growth and Form: The Complete Revised Edition. New York: Dover; 1992. doi: 10.1017/CBO9781107325852
  2. Morphogenesis: Origins of Patterns and Shapes. Eds. Bourgine P., Lesne A. Springer; 2011. doi: 10.1007/978-3-642-13174-5
  3. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology. 2005;23:47-55. doi: 10.1038/nbt1055
  4. Sangan RS, Sangwan-Norrel BS, Harada H. In vitro techniques and plant morphogenesis: fundamental aspects and practical applications. Plant Biotechnology. 1997;14(2):93-100. doi: 10.5511/plantbiotechnology.14.93
  5. Reddi AH. Morphogenesis and tissue engineering of bone and cartilage: Inductive signals, stem cells, and biomimetic biomaterials. Tissue Engineering. 2000;6(4):351-359. doi: 10.1089/107632700418074
  6. Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nature Biotechnology. 1998;16:247-252. doi: 10.1038/nbt0398-247
  7. Turing AM. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B. 1952;237(641):37-72. doi: 10.1098/rstb.1952.0012
  8. Schwank G, Basler K. Regulation of organ growth by morphogen gradients. Cold Spring Harbor Perspectives in Biology. 2010;2(1):a001669. doi: 10.1101/cshperspect.a001669
  9. Meinhardt H. Models for the generation and interpretation of gradients. Cold Spring Harbor Perspectives in Biology. 2009;1(4):a001362. doi: 10.1101/cshperspect.a001362
  10. Voss-Bohme A. Multi-Scale modeling in morphogenesis: A critical analysis of the cellular potts model. PLoS ONE. 2012;7(9):e42852. doi: 10.1371/journal.pone.0042852
  11. Coskuna H, Lib Y, Mackeyd MA. Ameboid cell motility: A model and inverse problem, with an application to live cell imaging data. Journal of Theoretical Biology. 2007;244(2):169-179. doi: 10.1016/j.jtbi.2006.07.025
  12. Kabanikhin SI. Obratnye i nekorrektnye zadachi. Uchebnik dlia studentov vysshikh uchebnykh zavedenii (Inverse and Ill-Posed Problems. Student Handbook). Novosibirsk: Siberian Scientific Publishers; 2009. 458 p. (in Russ.).
  13. Zubairova US, Golushko SK, Penenko AV, Nikolaev SV. An L-System for modeling of unidimensionally growing flat plant tissues. Vavilovskii zhurnal genetiki i selektsii (Russian Journal of Genetics: Applied Research). 2014;18(4/2):945-952 (in Russ.).
  14. Wolpert L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 1969;25(1):1-47. doi: 10.1016/S0022-5193(69)80016-0
  15. Sanders Dzh, Kendrot E. Tekhnologiia CUDA v primerakh: vvedenie v programmirovanie graficheskikh protsessorov. Moscow; 2011. 232 p. Translation of: Sanders J, Kandrot E. CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison-Wesley; 2010.
  16. Boreskov A, Kharlamov A, Markovskii ND, Mikushin D, Mortikov E, Myl'tsev A, Sakharnykh N, Frolov V. Parallel'nye vychisleniia na GPU. Arkhitektura i programmnaia model' CUDA (Parallel computing on GPU. Architecture and CUDA programming model): a textbook. Moscow; 2012. 336 p. (in Russ.).
  17. Swat M., Thomas G.L., Belmonte J.M., Shirinifard A., Hmeljak D., Glazier J.A. Multi-Scale Modeling of Tissues Using CompuCell3D. Computational Methods in Cell Biology. 2012;110:325-366. doi: 10.1016/B978-0-12-388403-9.00013-8
  18. Nikolaev SV, Zubairova US, Fadeev SI, Mjolsness ED, Kolchanov NA. Study of a one-dimensional model, accounting for cell division, of regulation of the renewing zone size in a biological tissue. Journal of Applied and Industrial Mathematics. 2011;5(4):601-611. doi: 10.1134/S1990478911040156
  19. Nikolaev SV, Zubairova US, Penenko AV, Mjolsness ED, Shapiro BE, Kolchanov NA. Model of structuring the stem cell niche in shoot apical meristem of Arabidopsis thaliana. Doklady Biological Sciences. 2013;452(1):316-319. doi: 10.1134/S0012496613050104
  20. Samarskii AA, Vabishchevich PN. Vychislitel'naia teploperedacha (Computational Heat Transfer). Moscow; 2003 (in Russ.).
  21. Sanderson AR, Meyer MD, Kirby RM, Johnson CR. A framework for exploring numerical solutions of advection-reaction-diffusion equations using a GPU-based approach. Computing and Visualization in Science. 2009;12(4):155-170. doi: 10.1007/s00791-008-0086-0
  22. Hochbruck M, Ostermann A. Exponential integrators. Acta Numerica. 2010;19:209-286. doi: 10.1017/S0962492910000048
  23. Einkemmer L, Ostermann A. Exponential Integrators on Graphic Processing Units ArXiv. 2013. Article ID 1309.4616.
  24. Penenko VV, Tsvetova EA, Penenko AV. Variational approach and Euler’s integrating factors for environmental studies. CAMWA. 2014;67(12):2240-2256. doi: 10.1016/j.camwa.2014.04.004
  25. Hesstvedt E, Hov O, Isaacsen I. Quasi-steady-state-approximation in air pollution modelling: comparison of two numerical schemes for oxidant prediction. Int. J. Chem. Kinet. 1978;10:971-994. doi: 10.1002/kin.550100907
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2014.9.491
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2022