Russian version English version
Volume 4   Issue 1   Year 2009
Galitskii V.V.

Model Analysis of Dynamics of the Long-Distance Assimilates Transport in the Freely Growing Tree

Mathematical Biology & Bioinformatics. 2009;4(1):1-20.

doi: 10.17537/2009.4.1.


  1. Kursanov AL. Assimilate Transport in Plants. Elsevier Publishing Company; 1984.
  2. Minchin PEH, Lacointe A. New understanding on phloem physiology and possibleconsequences for modelling long-distance carbon transport. New Phytologist. 2005;166:771-779. doi: 10.1111/j.1469-8137.2005.01323.x
  3. Thornley JHM. A model to describe the partitioning of photosynthate during vegetative plant growth. Ann. Bot. 1972;36:419-430.
  4. Thornley JHM. A balanced quantitative model for root: shoot ratios in vegetative plants. Ann. Bot. 1972;36:431-441.
  5. Wilson JB. A review of evidence on the control of shoot: root ratio, in relation to models. Ann. Bot. 1988;61:433-449.
  6. Galitskii VV. On Distribution Dynamics of the Free-Growing Tree Biomass with Height. The Model Analysis. Doklady Biochemistry and Biophysics. 2006;407:564-566 (in Russ.).
  7. Zimmerman MH, Brown CL. TREES (Structure and Function). New York: Springer; 1971. 336 p.
  8. Műnch E. Die Stoffbewegungen in der Pflanze. Jena: G. Fischer; 1930. 234 p.
  9. Galitskii VV. Izvestiya Rossiiskoi Akademii Nauk – Seriya Biologicheskaya (Bulletins of the Russian Academy of Sciences. Biology Bulletin). 1999;5:539-546 (in Russ.).
  10. Galitskii VV. The 2D modeling of tree community: from “microscopic” description to macroscopic behavior. For. Ecol. Manage. 2003;183:95-111. doi: 10.1016/S0378-1127(03)00096-3
  11. Galitsky VV. Modeling of the plant community: An individual-oriented approach: 2. A model of the community. Biology Bulletin. 2000;27(2):139-145.
  12. Galitskii VV. Doklady Akademii Nauk (Doklady Academy of Sciences). 1998;362:840-843 (in Russ.).
  13. Galitskii VV. Izvestiya Rossiiskoi Akademii Nauk – Seriya Biologicheskaya (. Bulletins of the Russian Academy of Sciences. Biology Bulletin). 2006;2:156-164 (in Russ.).
  14. Galitskii VV. Dynamics of competition in uniform communities of trees. Community Ecology. 2006;7:69-80. doi: 10.1556/ComEc.7.2006.1.7
  15. Purves DW, Law R. Experimental derivation of functions relating growth of Arabidopsis thaliana to neighbour size and distance. J. Ecol. 2002;90:882-894.
  16. Sukachev VN. Izbrannye trudy (Selected Works). Moscow; 1972. 418 p. (in Russ.).
  17. Dale VH, Doyle TW, Shugart HH. A comparison of tree growth models. Ecol. Model. 1985;29:145-169. doi: 10.1016/0304-3800(85)90051-1
  18. Barthèlèmy D, Caraglio Y. Plant Architecture: A Dynamic, Multilevel and Comprehensive Approach to Plant Form, Structure and Ontogeny. Ann. Bot. 2007;99:75-407.
  19. Hölttä T, Vesala T, Sevanto S, Perämäki M, Nikinmaa E. Modelling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis. Trees. 2006;20:67-78. doi: 10.1007/s00468-005-0014-6
  20. Galitskii VV. Issledovano v Rossii (Investigated in Russia). 2004;247:2646-2662 (in Russ.).
  21. Galitskii VV. Issledovano v Rossii (Investigated in Russia). 2008:594-605 (in Russ.).
  22. Poletaev IA. Problemy kibernetiki (Problems of Cybernetics). 1966;16:171-190 (in Russ.).
  23. Tselniker JL. Lesovedenie (Forest Science). 1994;4:35-44 (in Russ.).
  24. Shinozaki K, Yoda K, Hozumi K, Kira T. A quantitative analysis of plant form. Pipe model theory (I). Jpn. J. Ecol. 1964;14:97-105.
  25. Peñuelas J. A big issue for trees. Nature. 2005;437:964-965. doi: 10.1038/437965a
  26. Serebryakova TI, Voronin NS, Elenevskiy AG, Batygina TB, Shorina NI, Savinykh NP. Botany with Basics of Phytocoenology: Anatomy and Morphology of Plants: Textbook for higher school. 2006.
  27. Galitskii VV, Tyuryukanov AN. Methodological Prerequisites for Modeling in Biogeocenology. In: Tyuryukanov AN. Izbrannye Trudy (Selected Works). Moscow; 2001. P. 94-108 (in Russ.).
  28. Zotin AI. Termodinamicheskii podkhod k problemam razvitiia, rosta i stareniia (Thermodynamic Approach to the Problems of Development, Growth and Aging). Moscow: Nauka; 1974 (in Russ.).
  29. Enquist BJ. Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiology. 2002;22:1045-1064. doi: 10.1093/treephys/22.15-16.1045
  30. Timiryazev KA. Zhizn' rasteniia (The Life of the Plant). Moscow; 1914. 360 p. (in Russ.).
  31. Press WH, Teukolsky SA, Vettering WT, Flannery BP. Numerical Recipes in FORTRAN: the art of scientific computing. Cambridge: Cambridge Univ. Press; 1992.
  32. Orlov AYa. Vliianie pochvennykh faktorov na osnovnye osobennosti nekotorykh tipov lesa iuzhnoi taigi (The Effect of Soil Factors on the Main Characteristics of Some Types of South Taiga Forest): Bulletin of MOIP. 1960. Iss. 3. (in Russ.).
  33. Smirnov VV. Organic Mass in Some Forests of the European Part of the USSR. Moscow: Nauka; 1971. 362 p.
  34. Dale JE, Sutcliffe JF. Phloem Transport. In: Plant physiology. Vol. IX: Water and Solutes in Plants. Eds Steward F.C., Sutcliffe J.F., Dale J.E. Orlands. New York: Academic Press; 1986. P. 455-549.
  35. Willenbrink J. Assimilate Transport in Phloem: Regulation and Mechanism. Russian Journal of Plant Physiology. 2002;49(1):8-15. doi: 10.1023/A:1013738208994
  36. Esau K. Anatomy of Seed Plants. 2nd Ed. John Wiley & Sons, Inc.; 1977.
  37. Mason TG., Maskell EJ. Studyes on the transport of carbohydrates in the cotton plant. A study of djurnal variation in the carbohydrates of leaf, bark and wood, and of the effects of “ringing”. Ann. Bot. 1928;42:189-253.
  38. Thompson MV, Holbrook NM. Scaling phloem transport: water potential equilibrium and osmoregulatory flow. Plant, Cell and Environment. 2003;26:1561-1577. doi: 10.1046/j.1365-3040.2003.01080.x
  39. Landau LD, Lifshitz EM. Statistical Physics.
  40. Thompson MV, Holbrook NM. Application of a Single-solute Non-steady-state Phloem Model to the Study of Long-distance Assimilate Transport. J. Theor. Biol. 2003;220:419-455.
  41. Curtis OF. Studies on solute translocation in plants. Experiments indicating that translocation is dependent on the activity of living cells. Amer. J. Bot. 1929;16:154-168. doi: 10.2307/2435743
  42. Sheehy JE, Mitchell PL, Durand J-L, Gastal F, Woofward FI. Calculation of translocation coefficients from phloem anatomy for use in crop models. Ann. Bot. 1995;76:263-269. doi: 10.1006/anbo.1995.1095
  43. Peters WS, van Bel AJE, Knoblauch M. The geometry of the forisome-sieve element-sieve plate complex in the phloem of Vicia faba L. leaflets. Journal of Experimental Botany. 2006;57(12):3091-3098. doi: 10.1093/jxb/erl072
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2009.4.1
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024