Russian version English version
Volume 10   Issue 2   Year 2015
Kursanov A.G., Katsnelson L.B., Vikulova N.A., Solovyova O.E., Markhasin V.S.

Functional Heterogeneity Arising Due To Electrical and Mechanical Interactions between Cardial Myocytes in Mathematical Model of Homogeneous Myocardial Fiber

Mathematical Biology & Bioinformatics. 2015;10(2):436-454.

doi: 10.17537/2015.10.436.

References

  1. Ashikaga H., Coppola B.A., Hopenfeld B., Leifer E.S., McVeigh E.R., Omens J.H. Transmural dispersion of myofiber mechanics: implications for electrical heterogeneity in vivo. J. Am. Coll. Cardiol. 2007;49(8):909-916. doi: 10.1016/j.jacc.2006.07.074
  2. Ashikaga H., van der Spoel T.I., Coppola B.A., Omens J.H. Transmural myocardial mechanics during isovolumic contraction. JACC Cardiovasc. Imaging. 2009;2(2):202-211. doi: 10.1016/j.jcmg.2008.11.009
  3. Brutsaert D.L. Nonuniformity: a physiologic modulator of contraction and relaxation of the normal heart. J. Am. Coll. Cardiol. 1987;9(2):341-348. doi: 10.1016/S0735-1097(87)80387-X
  4. Clayton R.H., Bernus O., Cherry E.M., Dierckx H., Fenton F.H., Mirabella L., Panfilov A.V., Sachse F.B., Seemann G., Zhang H. Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog. Biophys. Mol. Biol. 2011;104(1-3):22-48. doi: 10.1016/j.pbiomolbio.2010.05.008
  5. Izakov V., Katsnelson L.B., Blyakhman F.A., Markhasin V.S., Shklyar T.F. Cooperative effects due to calcium binding by troponin and their consequences for contraction and relaxation of cardiac muscle under various conditions of mechanical loading. Circ. Res. 1991;69(5):1171-1184. doi: 10.1161/01.RES.69.5.1171
  6. Jahnke T., Lubich C. Error bounds for exponential operator splittings. BIT Numerical Mathematics. 2000;40(4):735-744. doi: 10.1023/A:1022396519656
  7. Katsnelson L.B., Nikitina L.V., Chemla D., Solovyova O., Coirault C., Lecarpentier Y., Markhasin V.S. Influence of viscosity on myocardium mechanical activity: A mathematical model. Journal of Theoretical Biology. 2004;3(230):385-405. doi: 10.1016/j.jtbi.2004.05.007
  8. Katsnelson L.B., Sulman T., Solovyova O., Markhasin V.S. Role of myocardial viscoelasticity in disturbances of electrical and mechanical activity in calcium overloaded cardiomyocytes: mathematical modeling. J. Theor. Biol. 2011;272(1):83-95. doi: 10.1016/j.jtbi.2010.11.035
  9. Katsnelson L.B., Sulman T.B., Solovyova O.E., Markhasin V.S. Cooperative mechanisms of thin filament activation and their contribution to the myocardial contractile function. Assessment in a mathematical model. Biophysics. 2009;54(1):39-46. doi: 10.1134/S0006350909010072
  10. Katsnelson L.B., Vikulova N.A., Kursanov A.G., Solovyova O.E., Markhasin V.S. Electro-mechanical coupling in a one-dimensional model of heart muscle fiber. RJNAMM. 2014;29(5):275-284. doi: 10.1515/rnam-2014-0022
  11. Kaufmann R.L., Lab M.J., Hennekes R., Krause H. Feedback interaction of mechanical and electrical events in the isolated mammalian ventricular myocardium (cat papillary muscle). Pflugers Arch. 1971;324(2):100-123. doi: 10.1007/BF00592656
  12. Keener J.P., Sneyd J. Mathematical Physiology: I: Cellular Physiology. Springer; 2008.
  13. Kerckhoffs R.C.P., Healy S.N., Usyk T.P., McÑulloch A.D. Computational methods for cardiac electromechanics. Proceedings of the IEEE. 2006;94(4):769-782. doi: 10.1109/JPROC.2006.871772
  14. Kleber A.G., Rudy Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev. 2004;84:431-488. doi: 10.1152/physrev.00025.2003
  15. Kohl P., Sachs F., Franz M.R. Cardiac mechano-electric coupling and arrhythmias. OUP Oxford; 2011. 512 p. doi: 10.1093/med/9780199570164.001.0001
  16. Lab M.J., Allen D.G., Orchard C.H. The effects of shortening on myoplasmic calcium concentration and on the action potential in mammalian ventricular muscle. Circ. Res. 1984;55(6):825-829. doi: 10.1161/01.RES.55.6.825
  17. Markhasin V.S., Balakin A.A., Katsnelson L.B., Konovalov P., Lookin O.N., Protsenko Y., Solovyova O. Slow force response and auto-regulation of contractility in heterogeneous myocardium. Prog. Biophys. Mol. Biol. 2012;110(2-3):305-318. doi: 10.1016/j.pbiomolbio.2012.08.011
  18. Noble D., Varghese A., Kohl P., Noble P. Improved guinea-pig ventricular cell model incorporating a diadic space, IKr and IKs, and length- and tension-dependent processes. Can. J. Cardiol. 1998;14(1):123-134.
  19. SaffitzJ.E., KanterH.L., GreenK.G., TolleyT.K., BeyerE.C Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium. Circ. Res. 1994;74:1065-1070. doi: 10.1161/01.RES.74.6.1065
  20. Pravdin S.F., Dierckx H., Katsnelson L.B., Solovyova O., Markhasin V.S., Panfilov A.V. Electrical Wave Propagation in an Anisotropic Model of the Left Ventricle Based on Analytical Description of Cardiac Architecture. PLoS ONE. 2014;9(5). doi: 10.1371/journal.pone.0093617
  21. Sengupta P.P., Khandheria B.K., Korinek J., Wang J., Jahangir A., Seward J.B., Belohlavek M. Apex-to-base dispersion in regional timing of left ventricular shortening and lengthening. J. Am. Coll. Cardiol. 2006;47(1):163-172. doi: 10.1016/j.jacc.2005.08.073
  22. Shaw R.M., Rudy Y. Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ. Res. 1997;81(5):727-41. doi: 10.1161/01.RES.81.5.727
  23. Solovyova O., Katsnelson L.B., Konovalov P., Lookin O., Moskvin A.S., ProtsenkoY.L., Vikulova N., Kohl P., Markhasin V.S. Activation sequence as a key factor in spatio-temporal optimization of myocardial function. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2006;364(1843):1367-1383.
  24. Solovyova O., Vikulova N., Katsnelson L.B., Markhasin V.S., Noble P.J., Garny A., Kohl P., Noble D. Mechanical interaction of heterogeneous cardiac muscle segments in silico: effects on Ca2+ handling and action potential. IJB. 2003;13(12):3757-3782.
  25. Trayanova N.A. Whole-heart modeling: applications to cardiac electrophysiology and electromechanics. Circ. Res. 2011;108(1):113-128. doi: 10.1161/CIRCRESAHA.110.223610
  26. Wan X., Bryant S.M., Hart G. A topographical study of mechanical and electrical properties of single myocytes isolated from normal guinea-pig ventricular muscle. J. Anat. 2003;202(6):525-536. doi: 10.1046/j.1469-7580.2003.00187.x
Table of Contents Original Article
Math. Biol. Bioinf.
2015;10(2):436-454
doi: 10.17537/2015.10.436
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)
References

 

  Copyright IMPB RAS © 2005-2024