Russian version English version
Volume 10   Issue 2   Year 2015
Garbuzynskiy S.A., Matkarimov B.T., Finkelstein A.V.

Inclusion of the Most Important Multi-Particle Interactions in the AMBER Force Field and Optimization of Energy Parameters of the Revised Force Field

Mathematical Biology & Bioinformatics. 2015;10(2):580-592.

doi: 10.17537/2015.10.580.

References

  1. Salmon J.K., Shah Y., Wriggers W. Atom-level characterization of structural dynamics of proteins. Science. 2010;330:341-346. doi: 10.1126/science.1187409
  2. Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J.L., Dror R.O., Shaw D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Struct. Funct. Bioinf. 2010;78:1950-1958. doi: 10.1002/prot.22711
  3. Levitt M., Hirshberg M., Sharon R., Daggett V. Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution. Comput. Phys. Commun. 1995;91:215-231. doi: 10.1016/0010-4655(95)00049-L
  4. MacKerell A.D., Jr., Bashford D., Bellott M., Dunbrack R.L., Jr., Evanseck J.D., Field M.J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuchnir L., Kuczera K., Lau F.T.K., Mattos C., Michnick S., Ngo T., Nguyen D.T., Prodhom B., Reiher W.E., III, Roux B., Schlenkrich M., Smith J.C., Stote R., Straub J., Watanabe M., Wiorkiewicz-Kuczera J., Yin D., Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 1998;102:3586-3616. doi: 10.1021/jp973084f
  5. Jorgensen W.L., Maxwell D.S., Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996;118:11225-11236. doi: 10.1021/ja9621760
  6. Halgren T.A. Merck Molecular Force Field. I. Basis, form, parameterization and performance of MMFF94. J. Comput. Chem. 1995;17:490-519. doi: 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
  7. Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. Development and testing of a general Amber force fields. J. Comput. Chem. 2004;25:1157-1174. doi: 10.1002/jcc.20035
  8. Finkelstein A.V. Average and extreme multi-atom Van der Waals interactions: Strong coupling of multi-atom Van der Waals interactions with covalent bonding. Chem. Central J. 2007;1:21. doi: 10.1186/1752-153X-1-21
  9. Finkelstein A.V., Lobanov M.Y., Dovidchenko N.V., Bogatyreva N.S. Many-atom Van Der Waals interactions lead to direction-sensitive interactions of covalent bonds. J. Bioinform. Comput. Biol. 2008;6:693-707. doi: 10.1142/S0219720008003606
  10. Pereyaslavets L.B., Finkelstein A.V. Atomic Force Field FFsol for Calculating Molecular Interactions in Water Environment. Molecular Biology. 2010;44(2):303-316. doi: 10.1134/S0026893310020160
  11. Pereyaslavets L.B., Finkelstein A.V. Development and testing of PFFsol_1, a new polarizable atomic force field for calculation of molecular interactions in implicit water environment. J. Phys. Chem. B. 2012;116:4646-4654. doi: 10.1021/jp212474p
  12. Piana S., Klepeis J.L., Shaw D.E. Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr. Opin. Struct. Biol. 2014;24:98-105. doi: 10.1016/j.sbi.2013.12.006
  13. Wang J., Cieplak P., Kollman P.A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 2000;21:1049-1074. doi: 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
  14. Still W.C., Tempczyk A., Hawley R.C., Hendrickson T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 1990;112:6127-6129. doi: 10.1021/ja00172a038
  15. Axilrod B.M., Teller E. Interaction of the van der Waals’ type between three atoms. J. Chem. Phys. 1943;11:299-300. doi: 10.1063/1.1723844
  16. Glyakina A.V., Balabaev N.K., Galzitskaya O.V. Two-, three-, and four-state events occur in the mechanical unfolding of small protein L using molecular dynamics simulation. Protein Pept. Lett. 2010;17:92-103. doi: 10.2174/092986610789909449
  17. Balabaev N.K., Garbuzinskiy SA., Galzitskaya O.V., Glyakina A.V., Matkarimov B.T., Finkelstein A.V. Inclusion of the Most Important Multi-Particle Interactions in the Amber Force Field and Application of the Revised Force Field To Molecular Dynamics Calculations. Mathematical Biology and Bioinformatics. 2015;10(2):427-435.(in Russ.). doi: 10.17537/2015.10.427
  18. Allen F.H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Cryst. 2002;B58:380-388. doi: 10.1107/S0108768102003890
  19. Levitt M., Hirshberg M., Sharon R., Daggett V. Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution. Comput. Phys. Commun. 1995;91:215-231. doi: 10.1016/0010-4655(95)00049-L
  20. Bois C. Structure du p-crésol à basse témperature. Acta Cryst. 1970;B26:2086. doi: 10.1107/S0567740870005411
Table of Contents Original Article
Math. Biol. Bioinf.
2015;10(2):580-592
doi: 10.17537/2015.10.580
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024