Russian version English version
Volume 11   Issue 1   Year 2016
Rykunov S.D., Ustinin M.N., Polyanin A.G., Sychev V.V., Llinás R.R.

Software for the Partial Spectroscopy of Human Brain

Mathematical Biology & Bioinformatics. 2016;11(1):127-140.

doi: 10.17537/2016.11.127.



  1. Wolfe J.W., Rawlings C.A., Llinás R.R. A procedure for chronic microelectrode recording from cerebellar cortex in the awake cat and monkey. Physiology & Behavior. 1973;10:967-970. doi: 10.1016/0031-9384(73)90068-1
  2. Welsh J.P., Lang E., Suglhara I., Llinás R. Dynamic organization of motor control within the olivocerebellar system. Nature. 1994;374:453-457. doi: 10.1038/374453a0
  3. Clement R.S., Witte R.S., Rousche P.J., Kipke D.R. Functional connectivity in auditory cortex using chronic, multichannel unit recordings. Neurocomputing. 1999;26-27:347-354. doi: 10.1016/S0925-2312(99)00023-5
  4. Parshin P.P., Zemlyanov M.G., Irodova A.V., Ozhogin V.I., Tolmacheva N.S., Shustov L.D. Phys. Solid State. 1994;36:628.
  5. Parshin P.P., Zemlyanov M.G., Brand R.A. Partial spectra of atomic thermal vibrations in decagonal and icosahedral quasicrystals. Crystallography Reports. 2007;52(3):436-439. doi: 10.1134/S1063774507030157
  6. Parshin P.P., Zemlyanov M.G., Brand R.A. Atomic dynamics and interatomic interaction in quasicrystals. Crystallography Reports. 2011;56(7):1145-1148. doi: 10.1134/S1063774511070285
  7. Rosenberg J.R., Halliday D.M., Breeze P., Conway B.A. Identification of patterns of neuronal connectivity – partial spectra, partial coherence, and neuronal interactions. Journal of Neuroscience Methods. 1998;83:57-72. doi: 10.1016/S0165-0270(98)00061-2
  8. Halliday D.M. Spike-Train Analysis for Neural Systems. In: Modeling in the Neurosciences: from Biological Systems to Neuromimetic Robotics. Edited by: Reeke G.N., Poznansky R.R., Lindsay K.A., Rosenberg J.R., Sporns O. New York: CRC Press; 2005. P. 555-580. doi: 10.1201/9780203390979.ch20
  9. Lakhno V.D., Isaev E.A., Pugachev V.D., Zaitsev A.Yu., Fialko N.S., Rykunov S.D., Ustinin M.N. Development of information and communication technologies in Pushchino Research Center of the Russian Academy of Sciences. Mathematical Biology and Bioinformatics. 2012;7(2):529-544 (in Russ.). doi: 10.17537/2012.7.529
  10. Korshakov A.V., Polikarpov M.A., Ustinin M.N., Sychev V.V., Rykunov S.D., Naurzakov S.P., Grenbenkin A.P., Panchenko V.Ya. Registration and analysis of precise frequency EEG/MEG responses of human brain auditory cortex to monaural sound stimulation with fixed frequency components. Mathematical Biology and Bioinformatics. 2014;9(1):296-308 (in Russ.). doi: 10.17537/2014.9.296
  11. Ustinin M.N., Sychev V.V., Llinás R.R. Integrated software MEGMRIAn for the analysis and modeling of the magnetic encephalography data. Mathematical Biology and Bioinformatics. 2013;8(2):691-707 (in Russ.). doi: 10.17537/2013.8.691
  12. Ustinin M.N., Sychev V.V., Walton K.D., Llinás R.R. New Methodology for the Analysis and Representation of Human Brain Function: MEGMRIAn. Mathematical Biology & Bioinformatics. 2014;9(2):464-481.
  13. Llinás R.R., Ustinin M.N., Rykunov S.D., Boyko A.I., Sychev V.V., Walton K.D., Rabello G.M., Garcia J. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data. Frontiers in Neuroscience. 2015;9:373. doi: 10.3389/fnins.2015.00373
  14. Llinás R.R., Ustinin M.N. Frequency-pattern functional tomography of magnetoencephalography data allows new approach to the study of human brain organization. Front. Neural Circuits. 2014;8:43. doi: 10.3389/fncir.2014.00043
  15. Llinás R.R., Ustinin M.N. Precise Frequency-Pattern Analysis to Decompose Complex Systems into Functionally Invariant Entities: U.S. Patent. US20140107979 A1. 2014.
  16. Belouchrani A., Abed-Meraim K., Cardoso J.F., Moulines E. A blind source separation technique using second-order statistics. IEEE Trans. Signal Process. 1997;45(2):434-444. doi: 10.1109/78.554307
  17. Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 1987;32(1):11-22. doi: 10.1088/0031-9155/32/1/004
  18. Ester M., Kriegel H.P., Sander J., Xu X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Second Int. Conf. Knowl. Discov. Data Min. 1996:226-231.
  19. Fischl B. Automatically Parcellating the Human Cerebral Cortex. Cereb. Cortex. 2004;14(1):11-22. doi: 10.1093/cercor/bhg087
  20. Desikan R.S., Ségonne F., Fischl B., Quinn B.T., Dickerson B.C., Blacker D., Buckner R.L., Dale A.M., Maguire R.P., Hyman B.T., Albert M.S., Killiany R.J. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31(3):968-980. doi: 10.1016/j.neuroimage.2006.01.021
  21. Fischl B., Salat D.H., Van Der Kouwe A.J.W., Makris N., Ségonne F., Quinn B.T., Dale A.M. Sequence-independent segmentation of magnetic resonance images. Neuroimage. 2004;23( Suppl. 1):69-84. doi: 10.1016/j.neuroimage.2004.07.016
  22. Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin J.C., Pujol S., Bauer C., Jennings D., Fennessy F., Sonka M., Buatti J., Aylward S., Miller J.V., Pieper S., Kikinis R. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging. 2012;30(9):1323-1341. doi: 10.1016/j.mri.2012.05.001
  23. Yushkevich P.A., Piven J., Hazlett H.C., Smith R.G., Ho S., Gee J.C., Gerig G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116-1128. doi: 10.1016/j.neuroimage.2006.01.015
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2016.11.127
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024