Russian version English version
Volume 12   Issue 1   Year 2017
Bystrov V.S.

Computational Studies of the Hydroxyapatite Nanostructures, Peculiarities and Properties

Mathematical Biology & Bioinformatics. 2017;12(1):14-54.

doi: 10.17537/2017.12.14.



  1. Kay M.I., Young R.A., Posner A.S. Crystal Structure of Hydroxyapatite. Nature (London). 1964;204:1050. doi: 10.1038/2041050a0
  2. Elliot J.C. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Amsterdam: Elsevier; 1994.
  3. Biomaterial Science. Ed. Rather B.D. London: Academic Press; 1996.
  4. Hughes J.M., Cameron M., Crowley K.D. Structural variations in natural F, OH, and Cl apatites. American Mineralogist. 1989;74:870-876. (accessed: 21.12.2016).
  5. Elliot J.C., Mackie P.E., Young R.A. Monoclinic hydroxyapatite. Science. 1973;180(4090):1055-1057. doi: 10.1126/science.180.4090.1055
  6. Young R.A. Dependence of apatite properties on crystal structural details. Trans. N. Y. Acad. Sci. 1967;7:949-959. doi: 10.1111/j.2164-0947.1967.tb02836.x
  7. Ikoma T., Yamazaki A. Preparation and Structure of Refinement of Monoclinic Hydroxyapatite. J. Solid State Chem. 1999;144:272-276. doi: 10.1006/jssc.1998.8120
  8. Ma G., Liu X.Y. Hydroxyapatite: Hexagonal or Monoclinic? Crystal Growth & Design. 2009;9(7):2991-2994. doi: 10.1021/cg900156w
  9. Calderin L., Stott M. J., Rubio A. Electronic and crystallographic structure of apatites. Phys. Rev. B. 2003;67:134-106. doi: 10.1103/PhysRevB.67.134106
  10. Tofail S.A.M., Haverty D., Stanton K.T., Mcmonagle J.B. Structural Order and Dielectric Behaviour of Hydroxyapatite. Ferroelectrics. 2005;319:117-123. doi: 10.1080/00150190590965523
  11. Hitmi N., LaCabanne C., Young R.A. OH- dipole reorientability in hydroxyapatites: effect of tunnel size. J. Phys. Chem. Solids. 1986;47(6):533-546. doi: 10.1016/0022-3697(86)90155-1
  12. Nakamura S., Takeda H., Yamashita K. Proton transport polarization and depolarization of hydroxyapatite ceramics. J. Appl. Phys. 2001;89(10):5386-5392. doi: 10.1063/1.1357783
  13. Bystrov V.S., Paramonova E.V., Bystrova N.K., Sapronova A.V. Hydroxyapatite polarization properties. Scientific Proceedings of Riga Technical University: Material Sciences and Applied Chemistry. 2008;17(1):30-37.
  14. Bystrov V.S., Bystrova N.K., Paramonova E.V., Dekhtyar Yu.D. Interaction of charged hydroxyapatite and living cells. I. Hydroxyapatite polarization properties. Mathematical biology and Bioinformatics. 2009;4(2):7-11. doi: 10.17537/2009.4.7
  15. đERCERAMICS: Multifunctional percolated nanostructured ceramics fabricated from hydroxyapatite. NMP3-CT-2003-504937 FP6 project. Riga Technical University. 2007. (accessed 21.12.2016).
  16. Epple M., Ganesan K., Heumann R., Klesing J., Kovtun A., Neumann S., Sokolova V. Application of calcium phosphate nanoparticles in biomedicine. Journal of Materials Chemistry. 2010;20(1):18-23. doi: 10.1039/B910885H
  17. Dorozhkin S.V. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomaterialia. 2010;6:715-734. doi: 10.1016/j.actbio.2009.10.031
  18. Leon B., Janson J.A. Thin Calcium Phosphate Coatings for Medical Implants. Springer, 2009. doi: 10.1007/978-0-387-77718-4
  19. de Leeuw N.H. Computer simulations of structures and properties of the biomaterial hydroxyapatite. J. Mater. Chem. 2010;20:5376-5389. doi: 10.1039/b921400c
  20. Haverty D., Tofail S.A.M., Stanton K.T., McMonagle J.B. Structure and stability of hydroxyapatite: Density functional calculation and Rietveld analysis. Phys. Rev. B. 2005;71:094103. doi: 10.1103/PhysRevB.71.094103
  21. Mostafa N.Y., Brown P.W. Computer simulation of stoichiometric hydroxyapatite: Structure and substitutions. J. Physics and Chemistry of Solids. 2007;68(3):431-437. doi: 10.1016/j.jpcs.2006.12.011
  22. Slepko A., Demkov A.A. First-principles study of the biomineral hydroxyapatite. Phys. Rev. B. 2011;84:134-108. doi: 10.1103/PhysRevB.84.134108
  23. Slepko A., Demkov A.A. First-principles study of hydroxyapatite surface. J. Chem. Phys. 2013;139:044714. doi: 10.1063/1.4813828
  24. Astala R., Stott M.J. First-principles study of hydroxyapatite surfaces and water adsorption. Phys. Rev. B. 2008;78:075427. doi: 10.1103/PhysRevB.78.075427
  25. Rulis P., Ouyang L., Ching W.Y. Electronic structure and bonding in calcium apatite crystals: hydroxyapatite, fluoapatite, chlorapatite and bromapatite. Phys. Rev. B. 2004;70:155-104. doi: 10.1103/PhysRevB.70.155104
  26. Rulis P., Yao H., Ouyang L., Ching W.Y. Electronic structure, bonding, charge distribution, and x-ray absorption spectra of the (001) surfaces of fluorapatite and hydroxyapatite from first principles. Phys. Rev. B. 2007;76:245-410. doi: 10.1103/PhysRevB.76.245410
  27. Matsunaga K., Kuwabara A. First-principles study of vacancy formation in hydroxyapatite. Phys. Rev. B. 2007;75:014102. doi: 10.1103/PhysRevB.75.014102
  28. Bystrov V., Paramonova E., Bystrova N., Sapronova A., Filippov S. Computational molecular nanostructures and mechanical/adhesion properties of Hydroxyapatite. In: Micro- and Nanostructures of Biological Systems. Ed. G. Bischoff. Martin Luther University Halle-Wittenberg. Aachen: Shaker Verlag, 2005. P. 77-93.
  29. Bystrov V., Bystrova N., Paramonova E., Sapronova A., Filippov S. Modeling and computation of Hydroxyapatite nanostructures and properties. Advanced materials forum III. Mater. Science Forum. 2006;514-516(1-2):1434-1437. doi: 10.4028/
  30. Bystrov V. S., Paramonova E., Dekhtyar Y., Katashev A., Karlov A., Polyaka N., Bystrova A. V., Patmalnieks A., Kholkin A. L. Computational and experimental studies of size and shape related physical properties of hydroxyapatite nanoparticles. J. Phys.: Cond. Matter. 2011;23:065302. doi: 10.1088/0953-8984/23/6/065302
  31. Bystrov V., Costa E., Santos S., Almeida M., Kholkin A., Kopyl S., Dekhtyar Yu., Bystrova A.V., Paramonova E.V. Computational Study of Hydroxyapatite Properties and Surface Interactions. IEEE Conf. Publications. 2012. P. 1-3. doi: 10.1109/ISAF.2012.6297766
  32. Bystrov V.S., Paramonova E.V., Costa M.E.V., Santos C., Almeida M., Kopyl S., Dekhtyar Yu., Bystrova A.V., Maevsky E.I., Pullar R.C. and Kholkin A.L. Computational Study of the Properties and Surface Interactions of Hydroxyapatite. Ferroelectrics. 2013;449(1):94-101. doi: 10.1080/00150193.2013.822774
  33. Bystrova A.V., Dekhtyar Yu.D., Popov A.I., Bystrov V.S. Modeling and synchrotron data analysis of modified Hydroxyapatite structure. Mathematical Biology and Bioinformatics. 2014;9(1):171-182. doi: 10.17537/2014.9.171
  34. Bystrova A.V., Dekhtyar Yu.D., Popov A.I., Coutinho J., Bystrov V.S. Modified Hydroxyapatite Structure and Properties: Modeling and Synchrotron Data Analysis of Modified Hydroxyapatite Structure. Ferroelectrics. 2015;475(1):135-147. doi: 10.1080/00150193.2015.995580
  35. Bystrov V.S., Coutinho J., Bystrova A.V., Dekhtyar Yu.D., Pullar R.C., Poronin A., Palcevskis E., Dindune A., Alkan B., Durucan C., Paramonova E.V. Computational study of the hydroxyapatite structures, properties and defects. J. Phys. D: Appl. Phys. 2015;48:195-302. doi: 10.1088/0022-3727/48/19/195302
  36. Dekhtyar Yu., Khlusov I., Polyaka N., Sammons R., Tyulkin F. Influence of Bioimplant Surface Electrical potential on osteoblast Behaviour and Bone Tissue Formation. In: IFMBE Proc. 12th Mediterranean Conference on Medical and Biological Engineering and Computing. Eds. Bamidis P.D. and Pllikarakis N. Munich: MEDICON. 2010;29:800-803. doi: 10.1007/978-3-642-13039-7_202
  37. Dekhtyar Yu., Polyaka N., Sammons R. Electrically Charged Hydroxyapatite Enhances Immobilization and Proliferation of Osteoblasts. In: IFMBE Proceedings. Eds. Katashev A., Dekhtyar Yu., Spigulis J. Berlin Heidelberg: Springer-Verlag, 2008;20:23-25. doi: 10.1007/978-3-540-69367-3_7
  38. Dekhtyar Yu., Bystrov V., Bystrova A., Dindune A., Katashev A., Khlusov I., Palcevskis E., Paramonova E., Polyaka N.N., Romanova M., Sammons R., Veljović D. Engineering of the Hydroxyapatite Cell Adhesion Capacity. In: IFMBE Proceedings: International Symposium on Biomedical Engineering and Medical Physics. (10-12 October 2012. Latvia, Riga). Ed. Dekhtyar Yu. Heidelberg: Springer, 2013;38:182-185. doi: 10.1007/978-3-642-34197-7_48
  39. Dehtjars J., Dvornichenko M., Karlov A., Khlusov I., Poļaka N., Sammons R., Zajcevs K. Electrically Functionalized Hydroxyapatite and Calcium Phospate Surfaces to Enhance Immobilization and Proliferation of Osateoblasts In Vitro and Modulate Osteogenesis In Vivo. In: IFMBE Proceedings: World Congress on Medical Physics and Biomedical Engineering. (Germany, Munich. 2009). Eds. Dossel O and Schlegel W.C. Berlin: Springer, 2010;25(10):245-248.
  40. Dekhtyar Yu., Bystrov V., Khlusov I., Polyaka N., Sammons R., Tyulkin F. Hydroxyapatite Surface Nanoscaled characterization and Electrical Potential Functionalization to Engineer Osteoblasts Attachment and Generate Bone Tissue. In: Society For Biomaterials Annual Meeting: book of abstracts (11-16 April, 2011. Orlando, Florida, USA). 2011.Abstract No. 519.
  41. Onuma K. Recent research on pseudobiological hydroxyapatite crystal growth and phase transition mechanisms. Progress in Crystal Growth and Characterization of Materials. 2006;52:223-245. doi: 10.1016/j.pcrysgrow.2006.06.003
  42. Yin X., Scott M. J. Biological calcium phosphates and Posner´s cluster. J. Chem. Phys. 2003;118(8):3717-3723. doi: 10.1063/1.1539093
  43. Bystrov V.S. Piezoelectricity in the Ordered Monoclinic Hydroxyapatite. Ferroelectrics. 2015;475(1):148-153. doi: 10.1080/00150193.2015.995581
  44. Menendez-Proupin E., Cervantes-Rodriguez S., Osorio-Pulgar R., Franco-Cisterna M., Camacho-Montes H. and Fuentes M.E. Computer simulation of the elastic constants of hydroxyapatite and fluorapatite. J. Mechanical Behavior of Biomedical Materials. 2011;4:1011-1020. doi: 10.1016/j.jmbbm.2011.03.001
  45. Martins M., Santos C., Almeida M., Costa E. Hydroxyapatite micro- and nanoparticles: Nucleation and growth mechanisms in the presence of citrate species. J. Colloid and Interface Science. 2008:210-216. doi: 10.1016/j.jcis.2007.10.008
  46. Ye F., Guo H., Zhang H. Biomimetic synthesis of oriented hydroxyapatite mediated by nonionic surfactants. Nanothechnology. 2008;19(24):245606. doi: 10.1088/0957-4484/19/24/245605
  47. Aronov D., Chaikina M., Haddad J., Karlov A., Mezinskis G., Oster L., Pavlovska I., Rosenman G. Electronic states spectroscopy of Hydroxyapatite ceramics. J. Mater. Sci: Mater. Med. 2007;18:865-870. doi: 10.1007/s10856-006-0080-3
  48. Bystrov V., Bystrova N., Dekhtyar Yu. Size depended electrical properties of Hydroxyapatite nanoparticles. In: IFMBE Proceedings 25/ VIII. WC 2009. Eds. O. Dossel and W.C. Schlegel. Berlin: Springer, 2009. P. 230-232. doi: 10.1007/978-3-642-03887-7_64
  49. Bystrov V.S., Dekhtyar Yu., Paramonova E., Pullar R., Katashev A., Polyaka N., Bystrova A.V., Sapronova A., Fridkin V., Kliem H., Kholkin A.L. Polarization of PVDF and P(VDF – TrFE) thin films revealed by emission spectroscopy with computational simulation during phase transition. J. Appl. Phys. 2012;111:104113. doi: 10.1063/1.4721373
  50. Lang S.B., Tofail S.A.M., Gandhi A.A., Gregor M., Wolf-Brandstetter C., Kost J., Bauer S., Krause M. Pyroelectric, piezoelectric, and photoeffects in hydroxyapatite thin films on silicon. Appl. Phys. Lett. 2011;98:123703. doi: 10.1063/1.3571294
  51. Lang S.B., Tofail S.A.M., Kholkin A., Wojtas M., Gregor M., Gandhi A., Wang Y., Bauer S., Krause M., Plecenik A. Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon. Sci. Rep. 2013;3:2215. doi: 10.1038/srep02215
  52. AIMPRO Home Page. (accessed 11.12.2016).
  53. Britney P.R., Jones R. LDA Calculations Using a Basis of Gaussian Orbitals. Phys. Status Solidi B: Basic Res. 2000;217:131-171. doi: 10.1002/(SICI)1521-3951(200001)217:1<131::AID-PSSB131>3.0.CO;2-M
  54. Briddon P.R., Rayson M.J. Accurate Kohn-Sham DFT with the Speed of Tight Binding: Current Techniques and Future Directions in Materials Modeling. Phys. Status Solidi B. 2011;248(6):1309-1318. doi: 10.1002/pssb.201046147
  55. HyperChem. Tools for Molecular Modeling (release 7, 8). Professional edition. Gainesville: Hypercube, Inc., 2002. URL : (accessed 28.12.2016).
  56. Stewart J.J.P. Optimization of parameters for semi-empirical methods I. Method. J. Comp. Chem. 1989;10(2):209-220. doi: 10.1002/jcc.540100208
  57. Stewart J.J.P. Optimization of parameters for semi-empirical methods II. Applications. J. Comp. Chem. 1989;10(2):221-264. doi: 10.1002/jcc.540100209
  58. Terpstra R.A., Bennema P., Hartman P., Woensdregt C.F., Perdok W.G., Senechal M.L. F faces of apatite and its morphology: theory and observation. J. Crystal Growth. 1986;78:468-478. doi: 10.1016/0022-0248(86)90149-1
  59. Wenge Jiang, Haihua Pan, Yurong Cai, Jinhui Tao, Peng Liu, Xurong Xu, Ruikang Tang. Atomic Force Microscopy Reveals Hydroxyapatite-Citrate Interfacial Structure at the Atomic Level. Langmuir. 2008;24:12446-12451. doi: 10.1021/la801720w
  60. Hu Y.-Y., Rawal A., Schmidt-Rohr K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. PNAS. 2010:107(52):22425-22429. doi: 10.1073/pnas.1009219107
  61. Vandiver J., Dean D., Patel N., Bonfield W., Ortiz C. Nanoscale variation in surface charge of synthetic hydroxyapatite detected by chemically and spatially specific high-resolution force spectroscopy. Biomaterials. 2005;26:271-283. doi: 10.1016/j.biomaterials.2004.02.053
  62. Horiuchi N., Nakaguki S., Wada N., Nozaki K., Nakamura M., Nagai A., Katayama K., Yamashita K. Polarization-induced surface charges in hydroxyapatite ceramics. J. Appl. Phys. 2014;116:01490. doi: 10.1063/1.4886235
  63. Johann F. and Soergel E. Quantitative measurement of the surface charge density. Appl. Phys. Lett. 2009;95:232906. doi: 10.1063/1.3269606
  64. Bystrov V.S., Seyedhosseini E., Kopyl S., Bdikin I., Kholkin A. Piezoelectricity and ferroelectricity in biomaterials: Molecular modeling and piezoresponse force microscopy measurements. J. Appl. Phys. 2014;116(6):066803. doi: 10.1063/1.4891443
  65. Bystrov V.S., Bdikin I., Heredia A., Pullar R.C., Mishina E., Sigov A.S., Kholkin A.L. Piezoelectricity and Ferroelectricity in Biomaterials: From Proteins to Self-assembled Peptide Nanotubes. In: Piezoelectric Nanomaterials for Biomedical Applications. Eds. Ciofani G., Menciassi A. Berlin Heidelberg: Springer-Verlag, 2012. Chapter 7. P. 187-211. doi: 10.1007/978-3-642-28044-3_7
  66. Halperin C., Mutchnik S., Argonin A., Molotski M., Urenski P., Salai M., Rosenman G. Piezoelectric effect in Human Bones Studied in Nanometer Scale. Nano Lett. 2004;4(7):1253-1256. doi: 10.1021/nl049453i
  67. Kittel C. Introduction to solid state physics. New York: J. Wiley and Sons, Inc., 1978.
  68. Slepko A. Theory of Biomineral Hydroxyapatite: PhD Thesis.. 160 p. University of Texas at Austin, 2013.
  69. VASP (Vienna Ab initio Simulation Package). (accessed 22.11.
  70. Hollinger J.O., Einhorn T.A., Doll B., Sfeir C. Bone Tissue Engineering. Washington: CRC Press, 2004:91.
  71. Yamashita K., Oikawa N., Umegaki T. Acceleration and Deceleration of Bone-Like Crystal Growth on Ceramic Hydroxyapatite by Electric Poling. Chem. Mater. 1996;8:2697. doi: 10.1021/cm9602858
  72. Kanakis J., Chrissanthopoulos A., Tnaetos N., Kallitsis A., Dalas E. Crystallization of Hydroxyapatite on Oxadiazole-Based Homopolymers. Cryst. Growth Des. 2006;6:1547. doi: 10.1021/cg060015u
  73. Cruz F.J.A.L., Minas da Piedade M.E., Calado J.C.G. Standard molar enthalpies of formation of hydroxy-, chlor-, and bromapatite. J. Chem. Thermodynamics. 2005;37:1061. doi: 10.1016/j.jct.2005.01.010
  74. Bystrov V.S., Piccirillo C., Tobaldi D.M., Castro P.M.L., Coutinho J., Kopyl S., Pullar R.C. Oxygen vacancies, the optical band gap (Eg) and photocatalysis of hydroxyapatite: comparing modelling with measured data. Applied Catalysis B: Environmental. 2016;196:100-107. doi: 10.1016/j.apcatb.2016.05.014
  75. Bystrov V.S., Pullar R.C., Kopyl S., Piccirillo C., Coutinho J. Computational Studies of the Vacancies in Hydroxyapatite. In: Book of abstracts of the 1st international Conference on Materials Design and Applications 2016 (MDA2016). 30 June - 1 July, 2016, Portugal. Porto: Faculty of Engineering; University of Porto, 2016. MDA16-55. P. 43.
  76. Sato K., Kogure T., Iwai H., Tanaka J. Atomic-Scale {101¯0} Interfacial Structure in Hydroxyapatite Determined by High-Resolution Transmission Electron Microscopy. J. Am. Ceram. Soc. 2002;85:3054. doi: 10.1111/j.1151-2916.2002.tb00578.x
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2017.12.14
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)


  Copyright IMPB RAS © 2005-2024