Russian version English version
Volume 12   Issue 1   Year 2017
Vitaliy A. Likhoshvai, Stanislav I. Fadeev, Tamara M. Khlebodarova

Stasis and Periodicity in the Evolution of a Global Ecosystem: The Minimum Logistic Model

Mathematical Biology & Bioinformatics. 2017;12(1):120-136.

doi: 10.17537/2017.12.120.



  1. Butterfield N.J. Macroevolution and macroecology through deep time. Palaeontology. 2007;50(1):41-55. doi: 10.1111/j.1475-4983.2006.00613.x
  2. Raup D.M., Sepkoski J.J. Jr. Mass extinctions in the marine fossil record. Science. 1982;215(4539):1501-1503. doi: 10.1126/science.215.4539.1501
  3. MacLeod N. The causes of Phanerozoic extinctions. In: Evolution on Planet Earth. Eds. Rothschild L., Lister A. London: Academic Press; 2003. P. 253-277. doi: 10.1016/B978-012598655-7/50041-0
  4. Huey R.B., Ward P.D. Hypoxia, global warming, and terrestrial late Permian extinctions. Science. 2005;308(5720):398-401. doi: 10.1126/science.1108019
  5. Peters S.E. Environmental determinants of extinction selectivity in the fossil record. Nature. 2008;454(7204):626-629. doi: 10.1038/nature07032
  6. Wignall P.B., Sun Y., Bond D.P., Izon G., Newton R.J., Védrine S., Widdowson M., Ali J.R., Lai X., Jiang H., Cope H., Bottrell S.H. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science. 2009;324(5931):1179-1182. doi: 10.1126/science.1171956
  7. Courtillot V., Fluteau F. Cretaceous extinctions: the volcanic hypothesis. Science. 2010;328(5981):973-974. doi: 10.1126/science.328.5981.973-b
  8. Alvarez L.W., Alvarez W., Asaro F., Michel H.V. Extraterrestrial cause for the cretaceous-tertiary extinction. Science. 1980;208(4448):1095-1108. doi: 10.1126/science.208.4448.1095
  9. Alvarez L.W., Alvarez W., Asaro F., Michel H.V. Asteroid extinction hypothesis. Science. 1981;211(4483):654-656. doi: 10.1126/science.211.4483.654-a
  10. Schulte P., Alegret L., Arenillas I., Arz J.A., Barton P.J., Bown P.R., Bralower T.J., Christeson G.L., Claeys P., Cockell C.S. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science. 2010;327(5970):1214-1218. doi: 10.1126/science.1177265
  11. Archibald J.D., Clemens W.A., Padian K., Rowe T., Macleod N., Barrett P.M., Gale A., Holroyd P., Sues H.D., Arens N.C. et al. Cretaceous extinctions: multiple causes. Science. 2010;328(5981):973. doi: 10.1126/science.328.5981.973-a
  12. Raup D.M., Sepkoski J.J. Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. USA. 1984;81(3):801-805. doi: 10.1073/pnas.81.3.801
  13. Raup D.M., Sepkoski J.J. Jr. Periodic extinction of families and genera. Science. 1986;231:833-836. doi: 10.1126/science.11542060
  14. Sepkoski J.J. Jr. Extinctions of life. Los Alamos Sci. 1988;16:36-49.
  15. Sepkoski J.J. Jr. Periodicity in extinction and the problem of catastrophism in the history of life. J. Geol. Soc. London. 1989;146:7-19. doi: 10.1144/gsjgs.146.1.0007
  16. Rohde R.A., Muller R.A. Cycles in fossil diversity. Nature. 2005;434(7030):208-210. doi: 10.1038/nature03339
  17. Sznajd-Weron K., Weron R.L. A new model of mass extinctions. Physica A: Statistical Mechanics and its Applications. 2001;293(3-4):559-565. doi: 10.1016/S0378-4371(01)00019-X
  18. Guex J., Pilet S., Müntener O., Bartolini A., Spangenberg J., Schoene B., Sell B., Schaltegger U. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction. Sci. Rep. 2016;6. Article No. 23168. doi: 10.1038/srep23168
  19. Markov A.V. Dynamics of the marine faunal diversity in the phanerozoic: a new approach. Paleontol. J. 2001;35(1):1-9.
  20. Markov A.V. A new approach to modeling the diversity dynamics of phanerozoic marine biota. Zh. Obshch. Biol. 2001;62(6):460-471 (in Russ.).
  21. Markov A.V., Korotaev A.V. The dynamics of Phanerozoic marine animal diversity agrees with the hyperbolic growth model. Zh. Obshch. Biol. 2007;68(1):3-18 (in Russ.).
  22. Dieckmann U., Law R. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 1996;34(5-6):579-612. doi: 10.1007/BF02409751
  23. Marzoli A., Renne P.R., Piccirillo E.M., Ernesto M., Bellieni G., De Min A. Extensive 200-million-year-Old continental flood basalts of the central atlantic magmatic province. Science. 1999;284(5414):616-618. doi: 10.1126/science.284.5414.616
  24. Finnegan S., Bergmann K., Eiler J.M., Jones D.S., Fike D.A., Eisenman I., Hughes N.C., Tripati A.K., Fischer W.W. The magnitude and duration of Late Ordovician-Early Silurian glaciation. Science. 2011;331(6019):903-906. doi: 10.1126/science.1200803
  25. Finnegan S., Heim N.A., Peters S.E., Fischer W.W. Climate change and the selective signature of the Late Ordovician mass extinction. Proc. Natl. Acad. Sci. USA. 2012;109(18):6829-6834. doi: 10.1073/pnas.1117039109
  26. Keller G., Adatte T., Pardo A., Bajpai S., Khosla A., Samant B. Cretaceous extinctions: evidence overlooked. Science. 2010;328(5981):974-975. doi: 10.1126/science.328.5981.974-a
  27. Olsen P.E. Giant lava flows, mass extinctions, and mantle plumes. Science. 1999;284:604-605. doi: 10.1126/science.284.5414.604
  28. Hallam A., Wignall P.B. Mass extinctions and sea-level changes. Earth Sci. Rev. 1999;48:217-250. doi: 10.1016/S0012-8252(99)00055-0
  29. McElwain J.C., Beerling D.J., Woodward F.I. Fossil plants and global warming at the Triassic-Jurassic boundary. Science. 1999;285:1386-1390. doi: 10.1126/science.285.5432.1386
  30. Tanner L.H., Hubert J.F., Coffey B.P., McInerney D.P. Stability of atmospheric CO2 levels across the Triassic/Jurassic boundary. Nature. 2001;411(6838):675-677. doi: 10.1038/35079548
  31. Beerling D. CO2 and the end-Triassic mass extinction. Nature. 2002;415(6870):386-387. doi: 10.1038/415386a
  32. Petersen H.I., Lindström S. Synchronous wildfire activity rise and mire deforestation at the triassic-jurassic boundary. PLoS One. 2012;7(10). Article No. e47236. doi: 10.1371/journal.pone.0047236
  33. Bacon K.L., Belcher C.M., Haworth M., McElwain J.C. Increased atmospheric SO2 detected from changes in leaf physiognomy across the Triassic-Jurassic boundary interval of East Greenland. PLoS One. 2013;8(4). Article No. e60614. doi: 10.1371/journal.pone.0060614
  34. Knoll A.H., Bambach R.K., Canfield D.E., Grotzinger J.P. Comparative Earth history and Late Permian mass extinction. Science. 1996;273:452-457. doi: 10.1126/science.273.5274.452
  35. Shen Y., Farquhar J., Zhang H., Masterson A., Zhang T., Wing B.A. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction. Nat. Commun. 2011;2. Article No. 210. doi: 10.1038/ncomms1217
  36. Song H., Wignall P.B., Chu D., Tong J., Sun Y., Song H., He W., Tian L. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Sci. Rep. 2014;4. Article No. 4132. doi: 10.1038/srep04132
  37. Barnosky A.D., Matzke N., Tomiya S., Wogan G.O., Swartz B., Quental T.B., Marshall C., McGuire J.L., Lindsey E.L., Maguire K.C., Mersey B., Ferrer E.A. Has the Earth's sixth mass extinction already arrived? Nature. 2011;471(7336):51-57. doi: 10.1038/nature09678
  38. Ceballos G., Ehrlich P.R., Barnosky A.D., García A., Pringle R.M., Palmer T.M. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015;1(5). Article No. e1400253. doi: 10.1126/sciadv.1400253
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2017.12.120
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024