Russian version English version
Volume 12   Issue 1   Year 2017
Alevtina N. Korshunova, Victor D. Lakhno

The Peculiarities of Polaron Motion in the Molecular Polynucleotide Chains of Finite Length In The Presence Of Localized Excitations in the Chain

Mathematical Biology & Bioinformatics. 2017;12(1):204-223.

doi: 10.17537/2017.12.204.



  1. Shinwari M.W., Deen M.J., Starikov E.B., Cuniberti G. Electrical Conductance in Biological Molecules. Advanced Functional Materials. 2010;20(12):1865-1883. doi: 10.1002/adfm.200902066
  2. Starikov E.B. Electron–phonon coupling in DNA: a systematic study. Philosophical Magazine. 2005;85:3435-3462. doi: 10.1080/14786430500157110
  3. Zamora-Sillero E., Shapovalov A.V., Esteban F.J. Formation, control, and dynamics of N localized structures in the Peyrard-Bishop model. Phys. Rev. E. 2007;76:066603. doi: 10.1103/PhysRevE.76.066603
  4. Maniadis P., Kalosakas G., Rasmussen K.O., Bishop A.R. ac conductivity in a DNA charge transport model. Phys. Rev. E. 2005;72:021912. doi: 10.1103/PhysRevE.72.021912
  5. Komineas S., Kalosakas G., Bishop A.R. Effects of intrinsic base-pair fluctuations on charge transport in DNA. Phys. Rev. E. 2002;65:061905. doi: 10.1103/PhysRevE.65.061905
  6. Peyrard M., Cuesta-Lopez S., James G. Modelling DNA at the mesoscale: a challenge for nonlinear science? Nonlinearity. 2008;21:91-100. doi: 10.1088/0951-7715/21/6/T02
  7. Shigaev A.S., Ponomarev O.A., Lakhno V.D. Theoretical and experimental investigations of DNA open states. Mathematical Biology and Bioinformatics. 2013;8(2):553-664 (in Russ.). doi: 10.17537/2013.8.553
  8. Lakhno V.D. DNA nanobioelectronics. Int. Quantum. Chem. 2008;108:1970-1981.
  9. Nanobioelectronics - for Electronics, Biology and Medicine. Eds. Offenhausser A. Rinald R. N. Y.: Springer; 2009.
  10. Taniguchi M., Kawai T. DNA electronics. Physica E. 2006;33:1-12. doi: 10.1016/j.physe.2006.01.005
  11. Eudres R.G., Cox D.L., Singh R.R.P. Colloquium: The quest for high-conductance DNA. Rev. Mod. Phys. 2004;76:195-214. doi: 10.1103/RevModPhys.76.195
  12. Porath D., Cuniberti G., Di Felice R. Charge transport in DNA-based devices. Top. Curr. Chem. 2004;237:183-227. doi: 10.1007/b94477
  13. Lakhno V.D. Soliton-like Solutions and Electron Transfer in DNA. J. Biol. Phys. 2000;26:133.
  14. Fialko N.S., Lakhno V.D. Nonlinear dynamics of excitations in DNA. Phys. Lett. A. 2000;278:108. doi: 10.1016/S0375-9601(00)00755-6
  15. Conwell E.M., Rakhmanova S.V. Polarons in DNA. Proc. Natl. Acad. Sci. 2000;97:4556. doi: 10.1073/pnas.050074497
  16. Lakhno V.D., Korshunova A.N. Formation of stationary electronic states in finite homogeneous molecular chains. Mathematical Biology and Bioinformatics. 2010;5:1-29. doi: 10.17537/2010.5.1
  17. Lakhno V.D., Fialko N.S. Hole mobility in a homogeneous nucleotide chain. JETP Letters. 2003;78:336-338. doi: 10.1134/1.1625737
  18. Berashevich J.A., Chakraborty T. Thermodynamics of G.A mispairs in DNA: Continuum electrostatic model. J. Chem. Phys. 2009;130:015101. doi: 10.1063/1.3050107
  19. Korshunova A.N., Lakhno V.D. A new type of localized fast moving electronic excitations in molecular chains. Physica E. 2014;60:206. doi: 10.1016/j.physe.2014.02.025
  20. Lakhno V.D., Korshunova A.N. Electron motion in a Holstein molecular chain in an electric field. Eur. Phys. J. B. 2011;79:147. doi: 10.1140/epjb/e2010-10565-2
  21. Diaz E., Lima R.P.A., Dominguez-Adame F. Bloch-like oscillations in the Peyrard-Bishop-Holstein model. Phys. Rev. B. 2008;78:134303. doi: 10.1103/PhysRevB.78.134303
  22. Rakhmanova S.V., Conwell E.M. Polaron Motion in DNA. J. Phys. Chem. B. 2001;105:2056. doi: 10.1021/jp0036285
  23. Berashevich J.A., Bookatz A.D., Chakraborty T. The electric field effect and conduction in the Peyrard-Bishop-Holstein model. J. Phys.: Condens. Matter. 2008;20:035207. doi: 10.1088/0953-8984/20/03/035207
  24. Lakhno V.D., Chetverikov A.P. Excitation of bubbles and breathers in DNA and their interaction with the charge carriers. Mathematical Biology and Bioinformatics. 2014;9(1):4-19 (in Russ.). doi: 10.17537/2014.9.4
  25. Chetverikov A.P., Ebeling W., Lakhno V.D., Shigaev A.S., Velarde M.G. On the possibility that local mechanical forcing permits directionally-controlled long-range electron transfer along DNA-like molecular wires with no need of an external electric field - Mechanical control of electrons. Eur. Phys. J. B. 2016;89:101. doi: 10.1140/epjb/e2016-60949-1
  26. Hennig D., Starikov E. B., Archilla J. F. R., Palmero F. Charge Transport in Poly(dG)–Poly(dC) and Poly(dA)–Poly(dT) DNA Polymers. Journal of Biological Physics. 2004;30(3):227. doi: 10.1023/B:JOBP.0000046721.92623.a9
  27. Starikov E. B., Lewis J. P., Sankey O. F. Base sequence effects on charge carrier generation in DNA: a theoretical study. International Journal of Modern Physics B. 2005;19(29):4331-4357. doi: 10.1142/S0217979205032802
  28. Korshunova A.N., Lakhno V.D. The peculiarities of polaron motion in the molecular polynucleotide chains of finite length. Mathematical Biology and Bioinformatics. 2016;11(2):141-158 (in Russ.). doi: 10.17537/2016.11.141
  29. Peyrard M., Bishop A.R. Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 1989;62:2755-2758. doi: 10.1103/PhysRevLett.62.2755
  30. Dauxois T., Peyrard M., Bishop A.R. Dynamics and thermodynamics of a nonlinear model for DNA denaturation. Phys. Rev. E. 1993;47:684. doi: 10.1103/PhysRevE.47.684
  31. Peyrard M. Using DNA to probe nonlinear localized excitations? Europhys. Lett. 1998;44:271-277. doi: 10.1209/epl/i1998-00469-9
  32. Choi C.H., Kalosakas G., Rasmussen K.O., Hiromura M., Bishop A.R., Usheva A. DNA dynamically directs its own transcription initiation. Nucleic Acids Res. 2004;32(4):1584-1590. doi: 10.1093/nar/gkh335
  33. Holstein T. Studies of polaron motion: Part I. The molecular-crystal model. Annals of Phys. 1959;8:325-342. doi: 10.1016/0003-4916(59)90002-8
  34. Holstein T. Studies of polaron motion: Part II. The “small” polaron. Annals of Phys. 1959;8:343-389. doi: 10.1016/0003-4916(59)90003-X
  35. Shigaev A.S., Ponomarev O.A., Lakhno V.D. A new approach to microscopic modeling of a hole transfer in heteropolymer DNA. Chemical Physics Letters. 2011;513:276-279. doi: 10.1016/j.cplett.2011.07.080
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2017.12.204
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
Supplementary data


  Copyright IMPB RAS © 2005-2024