Russian version English version
Volume 13   Issue 1   Year 2018
Irina A. Borisova, Olga A. Kutnenko

The Problem of Correction Diagnostic Errors in the Target Attribute With the Function of Rival Similarity

Mathematical Biology & Bioinformatics. 2018;13(1):38-49.

doi: 10.17537/2018.13.38.

References

 

  1. de Waal T., Pannekoek J., Scholtus S. Handbook of Statistical Data Editing and Imputation. John Wiley and Sons, Inc. Hoboken, New Jersey; 2011. 456 p. doi: 10.1002/9780470904848
  2. Jason W. Osborne. Best Practices in Data Cleaning: A Complete Guide to Everything You Need to Do Before and After Collecting Your Data. 1st Edition. SAGE Publication, Inc. Los Angeles; 2013. 296 p.
  3. Luca Greco. Robust Methods for Data Reduction Alessio Farcomeni. Chapman and Hall/CRC; 2015. 297 p.
  4. Teng C.M. A comparison of noise handling techniques. In: Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference. 2001. P. 269-273.
  5. Quinlan J.R. Induction of decision trees. Machine Learning. 1986:81-106. doi: 10.1007/BF00116251
  6. Frenay B., Verleysen M. Classification in the Presence of Label Noise: a Survey. IEEE Transactions on neural networks and learning systems. 2014;25(5):845-869. doi: 10.1109/TNNLS.2013.2292894
  7. Segata N., Blanzieri E. Noise Reduction for Instance-Based Learning with a Local Maximal Margin Approach. Journal of Intelligent Information Systems 35 (October). 2010. doi: 10.1007/s10844-009-0101-z
  8. Massie S., Craw S., Wiratunga N. When Similar Problems Don’t Have Similar Solutions. In: Proceedings of the 7th International Conference on Case-Based Reasoning (ICCBR 07). Springer-Verlag, Berlin, Heidelberg; 2007. P. 92-106.
  9. Son S.-H., Kim J.-Y. Data Reduction for Instance-Based Learning Using Entropy-Based Partitioning. In: Proceedings of the International Conference on Computational Science and Its Applications. 2006. P. 590-599. doi: 10.1007/11751595_63
  10. Delany S.J., Segata N., Mac Namee B. Profiling instances in noise reduction. Knowledge-Based Systems. 2012;31:28-40. doi: 10.1016/j.knosys.2012.01.015
  11. Borisova I.A., Kutnenko O.A. Outliers detection in datasets with misclassified objects. Machine Learning and Data Analysis. 2015;1(11):1632-1641 (in Russ.).
  12. Yang Y., Wu X., X. Zhu. Dealing with Predictive-but-Unpredictable Attributes in Noisy Data Sources. In: Proceedings of 8th European Conference on Principles and Practice of Knowledge Discovery in Databases. Pisa, Italy; 2004. doi: 10.1007/978-3-540-30116-5_43
  13. Brodley C.E, Friedl M.A. Identifying Mislabeled Training Data. Journal of Artificial Intelligence Research. 1999;11:131-167.
  14. Wilson D.R., Martinez T.R. Reduction Techniques for Instance-Based Learning Algorithms. Machine Learning. 2000;38(3):257-286. doi: 10.1023/A:1007626913721
  15. Jankowski N., Grochowski M. Comparison of Instances Seletion Algorithms I. Algorithms Survey. Artificial Intelligence and Soft Computing. 2004:1-6.
  16. Brighton H., Mellish C. Advances in Instance Selection for Instance-Based Learning Algorithms. Data Mining and Knowledge Discovery. 2002; 6:153-172. doi: 10.1023/A:1014043630878
  17. Aggarwal C.C. Outlier analysis. Data Mining. 2015:237-263. doi: 10.1007/978-3-319-14142-8_8
  18. Zagoruiko N.G., Borisova I.A., Dyubanov V.V., Kutnenko O.A. Methods of recognition based on the function of rival similarity. Pattern Recognition and Image Analysis. 2008;18(1):1-6. doi: 10.1134/S105466180801001X
  19. Zagoruiko N.G. Kognitivnyi analiz dannykh (Cognitive analysis of data). Novosibirsk; 2013. 186 p. (in Russ.).
  20. Zagoruiko N.G. Prikladnye metody analiza dannykh i znanii (Advanced Methods of Data and Knowledge Analysis). Novosibirsk; 1999. 270 p. (in Russ.).
  21. Zagoruiko N.G., Borisova I.A., Kutnenko O.A., Dyubanov V.V. A construction of a compressed description of data using a function of rival similarity. Journal of Applied and Industrial Mathematics. 2013;7(2):275-286. doi: 10.1134/S199047891302018X
  22. Subbotin S.O. The complex of characteristic and criteria of comparison of training. Mathematical Machines and Systems. 2010;1:25-39 (in Russ.).
  23. Breast Cancer Wisconsin (Diagnostic) Data Set. http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29 (accessed July 2016).
  24. Pima Indians Diabetes Data Set. https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes (accessed July 2016).
  25. Parkinsons Data Set. https://archive.ics.uci.edu/ml/datasets/Parkinsons (accessed July 2016).
  26. Wilson D.R., Martinez T.R. Reduction Techniques for Instance-Based Learning Algorithms. Machine learning. 2000;38(3):257-286. doi: 10.1023/A:1007626913721
  27. Fukunaga K. Introduction to statistical pattern recognition. Academic Press; 1972.
Table of Contents Original Article
Math. Biol. Bioinf.
2018;13(1):38-49
doi: 10.17537/2018.13.38
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024