Russian version English version
Volume 13   Issue 1   Year 2018
Ree N.A., Likhoshvai V.A., Khlebodarova T.M.

Membrane Potential as a Regulation Mechanism of Periplasmic Nitrite Reductase Activity: A Mathematical Model

Mathematical Biology & Bioinformatics. 2018;13(1):238-269.

doi: 10.17537/2018.13.238.

References

 

  1. Simon J. Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiology Reviews. 2002;26(3):285-309. doi: 10.1111/j.1574-6976.2002.tb00616.x
  2. Simon J., Klotz M.G. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochim. Biophys. Acta. 2013;1827(2):114-135. doi: 10.1016/j.bbabio.2012.07.005
  3. Page L., Griffiths L., Cole J.A. Different physiological roles of two independent pathways for nitrite reduction to ammonia by enteric bacteria. Arch. Microbiol. 1990;154(4):349-354. doi: 10.1007/BF00276530
  4. Cole J. Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol. Lett. 1996;136(1):1-11. doi: 10.1111/j.1574-6968.1996.tb08017.x
  5. Abaibou H., Pommier J., Benoit S., Giordano G., Mandrand-Berthelot M.A. Expression and characterization of the Escherichia coli fdo locus and a possible physiological role for aerobic formate dehydrogenase. J. Bacteriol. 1995;177(24):7141-7149. doi: 10.1128/jb.177.24.7141-7149.1995
  6. Wang H., Gunsalus R.P. Coordinate regulation of the Escherichia coli formate dehydrogenase fdnGHI and fdhF genes in response to nitrate, nitrite, and formate: roles for NarL and NarP. J. Bacteriol. 2003;185(17):5076-5085. doi: 10.1128/JB.185.17.5076-5085.2003
  7. Wang H., Gunsalus R.P. The nrfA and nirB nitrite reductase operons in Escherichia coli are expressed differently in response to nitrate than to nitrite. J. Bacteriol. 2000;182:5813-5822. doi: 10.1128/JB.182.20.5813-5822.2000
  8. Darwin A., Tormay P, Page L, Griffiths L, Cole J. Identification of the formate dehydrogenases and genetic determinants of formate-dependent nitrite reduction by Escherichia coli K12. J. Gen Microbiol. 1993;139(8):1829-1840. doi: 10.1099/00221287-139-8-1829
  9. Stewart V., Bledsoe P. Synthetic lac operator substitutions for studying the nitrate- and nitrite-responsive NarX-NarL and NarQ-NarP two-component regulatory systems of Escherichia coli K-12. J. Bacteriol. 2003;185:2104-2111. doi: 10.1128/JB.185.7.2104-2111.2003
  10. Khlebodarova T.M., Kogai V.V., Akberdin I.R., Ri N.A., Fadeev S.I., Likhoshvai V.A. Modeling of Nitrite Utilization in E. coli Cells: Flux Analysis. Mathematical Biology and Bioinformatics. 2013;8(1):276-294 (in Russ.). doi: 10.17537/2013.8.276
  11. Ree N.A.,Likhoshvai V.A., Khlebodarova T.M. On The Mechanisms of Nitrite Utilization by Escherichia coli Cells during Stationary Growth. Mathematical Biology and Bioinformatics. 2015;10(1):193-205 (in Russ.). doi: 10.17537/2015.10.193
  12. Khlebodarova T.M., Ree N.A., Likhoshvai V.A. On the control mechanisms of the nitrite level in Escherichia coli cells: the mathematical model. BMC Microbiol. 2016;16(1). Article No 7. doi: 10.1186/s12866-015-0619-x
  13. Hakobyan M., Sargsyan H., Bagramyan K. Proton translocation coupled to formate oxidation in anaerobically grown fermenting Escherichia coli. Biophys. Chem. 2005;115:55-61. doi: 10.1016/j.bpc.2005.01.002
  14. Andrews S.C., Berks B.C., McClay J., Ambler A., Quail M.A., Golby P. Guest J.R.A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate-hydrogenlyase system. Microbiology. 1997;143:3633-3647. doi: 10.1099/00221287-143-11-3633
  15. Wang H., Tseng C.P., Gunsalus R.P. The napF and narG nitrate reductase operons in Escherichia coli are differentially expressed in response to submicromolar concentrations of nitrate but not nitrite. J. Bacteriol. 1999;181(17):5303-5308.
  16. McDowall J.S., Murphy B.J., Haumann M., Palmer T., Armstrong F.A., Sargent F. Bacterial formate hydrogenlyase complex. Proc. Natl. Acad. Sci. USA. 2014;111(38):3948-3956. doi: 10.1073/pnas.1407927111
  17. Sargent F. The Model [NiFe]-Hydrogenases of Escherichia coli. Adv. Microb. Physiol. 2016;68:433-507. doi: 10.1016/bs.ampbs.2016.02.008
  18. Noguchi K., Riggins D.P., Eldahan K.C., Kitko R.D., Slonczewski J.L. Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli. PLoS One. 2010;5(4). Article No. e10132. doi: 10.1371/journal.pone.0010132
  19. Rossmann R., Sawers G., Böck A. Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon. Mol Microbiol. 1991;5(11):2807-2814. doi: 10.1111/j.1365-2958.1991.tb01989.x
  20. Tseng C.P., Hansen A.K., Cotter P., Gunsalus R.P. Effect of cell growth rate on expression of the anaerobic respiratory pathway operons frdABCD, dmsABC, and narGHJI of Escherichia coli. J. Bacteriol. 1994;176(21):6599-6605. doi: 10.1128/jb.176.21.6599-6605.1994
  21. Pinske C., Jaroschinsky M., Linek S., Kelly C.L., Sargent F., Sawers R.G. Physiology and bioenergetics of [NiFe]-hydrogenase 2-catalyzed H2-consuming and H2-producing reactions in Escherichia coli. J. Bacteriol. 2015;197(2):296-306. doi: 10.1128/JB.02335-14
  22. Ballantine S.P., Boxer D.H. Isolation and characterization of a soluble active fragment of hydrogenase isoenzyme 2 from the membranes of anaerobically grown Escherichia coli. Eur. J. Biochem. 1986;156(2):277-284. doi: 10.1111/j.1432-1033.1986.tb09578.x
  23. Francis K., Patel P., Wendt J.C., Shanmugam K.T. Purification and characterization of two forms of hydrogenase isoenzyme 1 from Escherichia coli. J. Bacteriol. 1990;172(10):5750-5757. doi: 10.1128/jb.172.10.5750-5757.1990
  24. Lukey M.J., Parkin A., Roessler M.M., Murphy B.J., Harmer J., Palmer T., Sargent F., Armstrong F.A. How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J. Biol. Chem. 2010;285(6):3928-2938. doi: 10.1074/jbc.M109.067751
  25. Laurinavichene T.V., Tsygankov A.A. H2 consumption by Escherichia coli coupled via hydrogenase 1 or hydrogenase 2 to different terminal electron acceptors. FEMS Microbiol. Lett. 2001;202(1):121-124. doi: 10.1111/j.1574-6968.2001.tb10790.x
  26. Efremov R.G., Sazanov L.A. The coupling mechanism of respiratory complex I - a structural and evolutionary perspective. Biochim. Biophys. Acta. 2012;1817(10):1785-1795. doi: 10.1016/j.bbabio.2012.02.015
  27. Gwyer J.D., Richardson D.J., Butt J.N. Inhibiting Escherichia coli cytochrome c nitrite reductase: voltammetry reveals an enzyme equipped for action despite the chemical challenges it may face in vivo. Biochem. Soc. Trans. 2006;1:133-135. doi: 10.1042/BST0340133
  28. Pinske C., Sargent F. Exploring the directionality of Escherichia coli formate hydrogenlyase: a membrane-bound enzyme capable of fixing carbon dioxide to organic acid. Microbiologyopen. 2016;5(5):721-737. doi: 10.1002/mbo3.365
  29. Skibinski D.A., Golby P., Chang Y.S., Sargent F., Hoffman R., Harper R., Guest J.R., Attwood M.M., Berks B.C., Andrews S.C. Regulation of the hydrogenase-4 operon of Escherichia coli by the sigma(54)-dependent transcriptional activators FhlA and HyfR. J. Bacteriol. 2002;184(23):6642-6653. doi: 10.1128/JB.184.23.6642-6653.2002
  30. Bagramyan K., Mnatsakanyan N., Poladian A., Vassilian A., Trchounian A. The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH. FEBS Lett. 2002;516(1-3):172-178. doi: 10.1016/S0014-5793(02)02555-3
  31. Mnatsakanyan N., Bagramyan K., Trchounian A. Hydrogenase 3 but not hydrogenase 4 is major in hydrogen gas production by Escherichia coli formate hydrogenlyase at acidic pH and in the presence of external formate. Cell. Biochem. Biophys. 2004;41(3):357-366. doi: 10.1385/CBB:41:3:357
  32. Likhoshvai V., Ratushny A. Generalized Hill function method for modeling molecular processes. J. Bioinform. Comput. Biol. 2007:521-531. doi: 10.1142/S0219720007002837
  33. Sawers R.G. Formate and its role in hydrogen production in Escherichia coli. Biochem. Soc. Trans. 2005;33:42-46. doi: 10.1042/BST0330042
  34. Kaiser M., Sawers G. Nitrate repression of the Escherichia coli pfl operon is mediated by the dual sensors NarQ and NarX and the dual regulators NarL and NarP. J. Bacteriol. 1995;177(13):3647-3655. doi: 10.1128/jb.177.13.3647-3655.1995
  35. Sawers R. G. The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie Van Leeuwenhoek. 1994;66:57-88. doi: 10.1007/BF00871633
  36. Hopper S., Babst M., Schlensog V., Fischer H.M., Hennecke H., Böck A. Regulated expression in vitro of genes coding for formate hydrogenlyase components of Escherichia coli. J. Biol. Chem. 1994;269(30):19597-19604.
  37. Richard D.J., Sawers G., Sargent F., McWalter L., Boxer D.H. Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe]hydrogenases 1 and 2 of Escherichia coli. Microbiology. 1999;145:2903-2912. doi: 10.1099/00221287-145-10-2903
  38. Kasimoglu E., Park S.J., Malek J., Tseng C.P., Gunsalus R.P. Transcriptional regulation of the proton-translocating ATPase (atpIBEFHAGDC) operon of Escherichia coli: control by cell growth rate. J. Bacteriol. 1996;178(19):5563-5567. doi: 10.1128/jb.178.19.5563-5567.1996
  39. Wiedenmann A., Dimroth P., von Ballmoos C. Deltapsi and DeltapH are equivalent driving forces for proton transport through isolated F(0) complexes of ATP synthases. Biochim. Biophys. Acta. 2008;1777(10):1301-1310. doi: 10.1016/j.bbabio.2008.06.008
  40. Bremer H., Dennis P.P. Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal. Plus. 2008;3(1). doi: 10.1128/ecosal.5.2.3
  41. Unden G., Bongaerts J. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim. Biophys. Acta. 1997;1320(3):217-234. doi: 10.1016/S0005-2728(97)00034-0
  42. Outten C.E., O'Halloran T.V. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science. 2001;292(5526):2488-2492. doi: 10.1126/science.1060331
  43. Axley M.J., Grahame D.A. Kinetics for formate dehydrogenase of Escherichia coli formate-hydrogenlyase. J. Biol. Chem. 1991;266(21):13731-13736.
  44. Etzold C., Deckers-Hebestreit G., Altendorf K. Turnover number of Escherichia coli F0F1 ATP synthase for ATP synthesis in membrane vesicles. Eur. J. Biochem. 1997;243(1-2):336-343. doi: 10.1111/j.1432-1033.1997.0336a.x
  45. Maeda T., Sanchez-Torres V., Wood T.K. Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Appl. Microbiol. Biotechnol. 2007;76(5):1035-1042. doi: 10.1007/s00253-007-1086-6
  46. Leonhartsberger S., Korsa I., Böck A. The molecular biology of formate metabolism in enterobacteria. J. Mol. Microbiol. Biotechnol. 2002;4(3):269-276.
  47. Wilks J.C., Slonczewski J.L. pH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry. J. Bacteriol. 2007;189(15):5601-5607. doi: 10.1128/JB.00615-07
  48. Rodrigue A., Chanal A., Beck K., Müller M., Wu L.F. Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial tat pathway. J. Biol. Chem. 1999;274(19):13223-13228. doi: 10.1074/jbc.274.19.13223
  49. Pope N., Cole J. Generation of a membrane potential by one of two independent pathways for nitrite reduction by Escherichia coli. J. Gen. Microbiol. 1982;128:219-222. doi: 10.1099/00221287-128-1-219
  50. Daniels C., Bole D., Quay S., Oxender D. Role for membrane potential in the secretion of protein into the periplasm of Escherichia coli. Proc. Natl. Acad. Sci. USA. 1981;78:5396-5400. doi: 10.1073/pnas.78.9.5396
  51. Price C.E., Driessen A.J.M. Biogenesis of membrane bound respiratory complexes in Escherichia coli. Biochim. Biophys. Acta. 2010;1803(6):748-766. doi: 10.1016/j.bbamcr.2010.01.019
  52. Jones S.A., Chowdhury F.Z., Fabich A.J., Anderson A., Schreiner D.M., House A.L., Autieri S.M., Leatham M.P., Lins J.J., Jorgensen M., Cohen P.S., Conway T. Respiration of Escherichia coli in the mouse intestine. Infect. Immun. 2007;75(10):4891-4899. doi: 10.1128/IAI.00484-07
  53. Stewart V., Lu Y., Darwin A.J. Periplasmic nitrate reductase (NapABC enzyme) supports anaerobic respiration by Escherichia coli K-12. J. Bacteriol. 2002;184(5):1314-1323. doi: 10.1128/JB.184.5.1314-1323.2002
  54. Aldridge C., Storm A., Cline K., Dabney-Smith C. The chloroplast twin arginine transport (Tat) component, Tha4, undergoes conformational changes leading to Tat protein transport. J. Biol. Chem. 2012;287(41):34752-34763. doi: 10.1074/jbc.M112.385666
  55. Dyall S.D., Brown M.T., Johnson P.J. Ancient invasions: from endosymbionts to organelles. Science. 2004;304(5668):253-257. doi: 10.1126/science.1094884
  56. Zimorski V., Ku C., Martin W.F., Gould S.B. Endosymbiotic theory for organelle origins. Curr. Opin. Microbiol. 2014:38-48. doi: 10.1016/j.mib.2014.09.008
  57. Sawers R.G., Jamieson D.J., Higgins C.F., Boxer D.H. Characterization and physiological roles of membrane-bound hydrogenase isoenzymes from Salmonella typhimurium. J. Bacteriol. 1986;168:398-404. doi: 10.1128/jb.168.1.398-404.1986
  58. Clarke T.A., Cole J.A., Richardson D.J., Hemmings A.M. The crystal structure of the pentahaem c-type cytochrome NrfB and characterization of its solutionstate interaction with the pentahaem nitrite reductase NrfA. Biochem J. 2007;406:19-30. doi: 10.1042/BJ20070321
  59. Graham L.L., Harris R., Villiger W., Beveridge T.J. Freeze-substitution of gramnegative eubacteria: general cell morphology and envelope profiles. J. Bacteriol. 1991;173:1623-1633. doi: 10.1128/jb.173.5.1623-1633.1991
  60. Talmadge K., Gilbert W. Cellular location affects protein stability in Escherichia coli. Proc. Natl. Acad. Sci. USA. 1982;79:1830-1833. doi: 10.1073/pnas.79.6.1830
  61. Kemp G.L., Clarke T.A., Marritt S.J., Lockwood C., Poock S.R., Hemmings A.M. Kinetic and thermodynamic resolution of the interactions between sulfite and the pentahaem cytochrome NrfA from Escherichia coli. Biochem J. 2010;431:73-80. doi: 10.1042/BJ20100866
  62. Coleman K.J., Cornish-Bowden A., Cole J.A. Activation of nitrite reductase from Escherichia coli K 12 by oxidized nicotinamide-adenine dinucleotide. Biochem. J. 1978;175:495-499. doi: 10.1042/bj1750495
Table of Contents Original Article
Math. Biol. Bioinf.
2018;13(1):238-269
doi: 10.17537/2018.13.238
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024